New bounds for densest packing of spheres in $n$-dimensional Euclidean space
Sbornik. Mathematics, Tome 24 (1974) no. 1, pp. 147-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we obtain an upper bound for the number of spherical segments of angular radius $\alpha$ that lie without overlapping on the surface of an $n$-dimensional sphere, and an upper bound for the density of filling $n$-dimensional Euclidean space with equal spheres. In these bounds, the constant in the exponent of $n$ is less than the corresponding constant in previously known bounds. Bibliography: 8 titles.
@article{SM_1974_24_1_a8,
     author = {V. M. Sidel'nikov},
     title = {New bounds for densest packing of spheres in $n$-dimensional {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {147--157},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_24_1_a8/}
}
TY  - JOUR
AU  - V. M. Sidel'nikov
TI  - New bounds for densest packing of spheres in $n$-dimensional Euclidean space
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 147
EP  - 157
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_24_1_a8/
LA  - en
ID  - SM_1974_24_1_a8
ER  - 
%0 Journal Article
%A V. M. Sidel'nikov
%T New bounds for densest packing of spheres in $n$-dimensional Euclidean space
%J Sbornik. Mathematics
%D 1974
%P 147-157
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_24_1_a8/
%G en
%F SM_1974_24_1_a8
V. M. Sidel'nikov. New bounds for densest packing of spheres in $n$-dimensional Euclidean space. Sbornik. Mathematics, Tome 24 (1974) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/SM_1974_24_1_a8/