On the theory of the discrete spectrum of the three-particle Schrödinger operator
Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 535-559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the discrete spectrum of the Schrödinger operator $H$ for a system of three particles. We assume that the operators $h_\alpha$, $\alpha=1,2,3$, which describe the three subsystems of two particles do not have any negative eigenvalues. Under the assumption that either two or three of the operators $h_\alpha$ have so-called virtual levels at the start of the continuous spectrum, we establish the existence of an infinite discrete spectrum for the three-particle operator $H$. The functions which describe the interactions between pairs of particles can be rapidly decreasing (or even of compact support) with respect to $x$. Bibliography: 17 titles.
@article{SM_1974_23_4_a4,
     author = {D. R. Yafaev},
     title = {On the theory of the discrete spectrum of the three-particle {Schr\"odinger} operator},
     journal = {Sbornik. Mathematics},
     pages = {535--559},
     year = {1974},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_4_a4/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - On the theory of the discrete spectrum of the three-particle Schrödinger operator
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 535
EP  - 559
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_4_a4/
LA  - en
ID  - SM_1974_23_4_a4
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T On the theory of the discrete spectrum of the three-particle Schrödinger operator
%J Sbornik. Mathematics
%D 1974
%P 535-559
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1974_23_4_a4/
%G en
%F SM_1974_23_4_a4
D. R. Yafaev. On the theory of the discrete spectrum of the three-particle Schrödinger operator. Sbornik. Mathematics, Tome 23 (1974) no. 4, pp. 535-559. http://geodesic.mathdoc.fr/item/SM_1974_23_4_a4/

[1] M. Sh. Birman, “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55 (97) (1961), 125–173 | MR

[2] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Trudy Matem. in-ta.im. V. A. Steklova, LXIX, 1963 | MR | Zbl

[3] G. M. Zhislin, “Issledovanie spektra operatora Shredingera dlya sistemy mnogikh chastits”, Trudy Mosk. matem. ob-va, IX, 1960, 81–120

[4] G. M. Zhislin, “Issledovanie spektra differentsialnykh operatorov kvantovo-mekhanicheskikh sistem mnogikh chastits v prostranstvakh funktsii zadannoi simmetrii”, Izv. AN SSSR, seriya matem., 33 (1969), 590–649 | Zbl

[5] W. Hunziker, “On the spectra of schrödinger multiparticle hamiltonians”, Helv. Phys. Acta, 39 (1966), 451–462 | MR | Zbl

[6] G. M. Zhislin, “O konechnosti diskretnogo spektra operatorov energii kvantovykh sistem mnogikh chastits”, DAN SSSR, 207:1 (1972), 25–28 | MR | Zbl

[7] D. R. Yafaev, “O diskretnom spektre trekhchastichnogo operatora Shredingera”, DAN SSSR, 206:1 (1972), 68–70

[8] D. R. Yafaev, “Tochechnyi spektr v kvantovomekhanicheskoi zadache mnogikh chastits”, Funts. analiz, 6:4 (1972), 103–104 | MR

[9] V. N. Efimov, “Energy levels arising from resonant two-body forces in a three-body system”, Phys. Letters, ser. B, 33:8 (1970), 563–564 | DOI

[10] V. N. Efimov, “Slabosvyazannye sostoyaniya trekh rezonansno vzaimodeistvuyuschikh chastits”, Yadernaya fizika, 12:5 (1970), 1080–1091

[11] R. D. Amado, J. V. Noble, “On Efimov's effect: a new pathology of three-particle systems”, Phys. Letters, ser. B, 35:1 (1971), 25–27 | DOI

[12] R. D. Amado, J. V. Noble, “Efimov's effect: a new pathology of three-particle systems, II”, Phys. Rev., ser. D, 5:8 (1972), 1992–2002 | DOI

[13] E. Heinz, “Beiträge zur störungen Theorie der Spectralzerlegung”, Math. Ann., 123 (1951), 415–438 | DOI | MR | Zbl

[14] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, II”, Trudy Mosk. matem. ob-va, XXVIII (1973), 3–34

[15] I. Ts. Gokhberg, M. G. Krein, “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi matem. nauk, XIII:2 (80) (1958), 3–72

[16] R. A. Minlos, L. D. Faddeev, “Zamechanie o zadache trekh chastits s tochechnym vzaimodeistviem”, Zh. eksp. i teor. fiziki, 39:11 (1960), 1459–1467

[17] R. A. Minlos, L. D. Faddeev, “O tochechnom vzaimodeistvii dlya sistemy iz trekh chastits v kvantovoi mekhanike”, DAN SSSR, 141:6 (1961), 1335–1338 | MR