Approximation of imbeddings of manifolds in codimension one
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 456-466

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any $(n-1)$-manifold topologically imbedded in a Euclidean space of dimension greater than four can be approximated arbitrarily closely by one whose complement has the property of uniform local one-connectedness. From this theorem and the results of Chernavskii and Kirby–Siebenmann it is deduced that there also exists a piecewise linear approximation if the dimension of the Euclidean space is greater than five. Bibliography: 15 titles.
@article{SM_1974_23_3_a8,
     author = {M. A. Shtan'ko},
     title = {Approximation of imbeddings of manifolds in codimension one},
     journal = {Sbornik. Mathematics},
     pages = {456--466},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a8/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - Approximation of imbeddings of manifolds in codimension one
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 456
EP  - 466
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a8/
LA  - en
ID  - SM_1974_23_3_a8
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T Approximation of imbeddings of manifolds in codimension one
%J Sbornik. Mathematics
%D 1974
%P 456-466
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a8/
%G en
%F SM_1974_23_3_a8
M. A. Shtan'ko. Approximation of imbeddings of manifolds in codimension one. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 456-466. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a8/