Germs of mappings $\omega$-determined with respect to a~given group
Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 425-440

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ J(n,p)$ be the space of germs of $C^\infty$-mappings $F\colon(R^n,0)\to(R^p,0)$ and $\mathfrak G$ a group operating on $J(n,p)$. The germ $F\in J(n,p)$ is called finitely determined with respect to $\mathfrak G$ if there exists an integer $k$ such that the orbit of the germ $F$ under the action of $\mathfrak G$ is uniquely determined by the $k$-jet of the germ $F$. The germ $F$ is called $\omega$-determined with respect to the group $\mathfrak G$ if each germ $G\in J(n,p)$ that has the same formal series as $F$ at the origin lies in the orbit of $F$ under the action of $\mathfrak G$. In this work, sufficient conditions are stated for $\omega$-determinedness. Examples are given of $\omega$-determined germs which are not finitely determined. Bibliography: 5 titles.
@article{SM_1974_23_3_a6,
     author = {G. R. Belitskii},
     title = {Germs of mappings $\omega$-determined with respect to a~given group},
     journal = {Sbornik. Mathematics},
     pages = {425--440},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_23_3_a6/}
}
TY  - JOUR
AU  - G. R. Belitskii
TI  - Germs of mappings $\omega$-determined with respect to a~given group
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 425
EP  - 440
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_23_3_a6/
LA  - en
ID  - SM_1974_23_3_a6
ER  - 
%0 Journal Article
%A G. R. Belitskii
%T Germs of mappings $\omega$-determined with respect to a~given group
%J Sbornik. Mathematics
%D 1974
%P 425-440
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_23_3_a6/
%G en
%F SM_1974_23_3_a6
G. R. Belitskii. Germs of mappings $\omega$-determined with respect to a~given group. Sbornik. Mathematics, Tome 23 (1974) no. 3, pp. 425-440. http://geodesic.mathdoc.fr/item/SM_1974_23_3_a6/