On the decomposition of K\"ahler manifolds with trivial canonical class
Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 580-583

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that simply-connected Kähler manifolds with $K=0$ may be decomposed into a product $M^n=A^s\times K^{m_1}_3\times\cdots\times K^{m_k}_3$, where $h^{2,0}(A^s)=0$, $h^{2,0}(K^{m_i}_3)=1$ and the form $\omega_i(2,0)$ has maximal rank. Also the manifolds with $l(K)>1$, of unirational type $K=0$, are described. They may be presented as $L^k/G$, where $K(L^k)=0$ and $G$ is a finite group of birational automorphisms of $L^k$. Bibliography: 5 titles.
@article{SM_1974_22_4_a6,
     author = {F. A. Bogomolov},
     title = {On the decomposition of {K\"ahler} manifolds with trivial canonical class},
     journal = {Sbornik. Mathematics},
     pages = {580--583},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1974_22_4_a6/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - On the decomposition of K\"ahler manifolds with trivial canonical class
JO  - Sbornik. Mathematics
PY  - 1974
SP  - 580
EP  - 583
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1974_22_4_a6/
LA  - en
ID  - SM_1974_22_4_a6
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T On the decomposition of K\"ahler manifolds with trivial canonical class
%J Sbornik. Mathematics
%D 1974
%P 580-583
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1974_22_4_a6/
%G en
%F SM_1974_22_4_a6
F. A. Bogomolov. On the decomposition of K\"ahler manifolds with trivial canonical class. Sbornik. Mathematics, Tome 22 (1974) no. 4, pp. 580-583. http://geodesic.mathdoc.fr/item/SM_1974_22_4_a6/