Boolean-valued algebras
Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 544-557 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper contains the construction of a general theory of Boolean-valued algebras: There are introduced the notions of a homeomorphism, congruence, subalgebra and direct product. It is shown that these algebras possess properties that are totally analogous to the properties of two-valued algebras. To every Boolean-valued algebra $\mathfrak A$ there is related a certain universal algebra $\mathfrak{N(A)}$, called the normal extension of $\mathfrak A$, whose elements are all the partitions of unity of the given Boolean algebra, with naturally extended operations. The equational equivalence of an arbitrary Boolean-valued algebra and its normal extension is proved. It is shown that every homomorphism of a Boolean-valued algebra can be uniquely extended to a homomorphism of its normal extension. Bibliography: 10 titles.
@article{SM_1973_21_4_a4,
     author = {V. N. Salii},
     title = {Boolean-valued algebras},
     journal = {Sbornik. Mathematics},
     pages = {544--557},
     year = {1973},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_4_a4/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - Boolean-valued algebras
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 544
EP  - 557
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_4_a4/
LA  - en
ID  - SM_1973_21_4_a4
ER  - 
%0 Journal Article
%A V. N. Salii
%T Boolean-valued algebras
%J Sbornik. Mathematics
%D 1973
%P 544-557
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_21_4_a4/
%G en
%F SM_1973_21_4_a4
V. N. Salii. Boolean-valued algebras. Sbornik. Mathematics, Tome 21 (1973) no. 4, pp. 544-557. http://geodesic.mathdoc.fr/item/SM_1973_21_4_a4/

[1] A. I. Maltsev, Algebraicheskie sistemy, izd-vo «Nauka», Moskva, 1970 | MR

[2] V. N. Salii, “Polugruppy $\mathscr{L}$-mnozhestv”, Sib. matem. zh., 8:3 (1967), 659–668 | MR | Zbl

[3] V. N. Salii, Lektsii po teorii reshetok, izd-vo Saratov. un-ta, Saratov, 1970

[4] V. N. Salii, “Polugruppy sluchainykh otnoshenii”, Mat. časop., 20:2 (1970), 122–134 | MR | Zbl

[5] A. L. Foster, “Generalized “Boolean” theory of universal algebras. I; II”, Math. Z., 58:3 (1953), 306–336 | DOI | MR | Zbl

[6] G. Grätzer, Universal algebra, Van Nostrand, Princeton, 1968 | MR | Zbl

[7] R. Mansfield, “The theory of Boolean ultrapowers”, Ann. Math. Log., 2:3 (1971), 297–323 | DOI | MR | Zbl

[8] A. Rutkowski, “Some remarks about Boolean-valued models”, Bull. Acad. pol. sci. sèr. sci. math., astron. et phys., 19:2 (1971), 87–93 | MR | Zbl

[9] D. Scott, “A proof of the independence of the continuum hypothesis”, Math. Systems Theory, 1 (1967), 89–111 | DOI | MR | Zbl

[10] D. Scott, “Boolean models and nonstandart analysis”, Appl. of Model Theory to Algebra, Analysis and Probability, New York, 1969