Positional operatives with invertible elements
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 412-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result of this paper is a proof of the fact that if $S$ is a $\Pi$-operative (i.e. an $n$-ary operation on a set $S$ satisfying the identities \begin{multline*} x_1\dots x_{k-1}(y_1\dots y_n)x_{k+1}\dots x_n=\\ =(x_{\sigma_k1}\dots x_{\sigma_k(k-1)}y_{\pi_k1}\dots y_{\pi_k(n-k+1)})\dots y_{\pi_kn}x_{\sigma_k(k+1)}\dots x_{\sigma_kn}, \end{multline*} where $\sigma_k$ and $\pi_k$ are permutations, $k=1,\dots,n$, $\sigma_1=\pi_1=\varepsilon$, and $\sigma_kk=k$), and if $S$ contains a two-sided invertible element $\alpha$ (i.e. $S=\alpha S\dots S = S\dots S\alpha$), then a semigroup operation $*$ can be defined on $S$ such that $$ x_1x_2\dots x_n=x_1*\psi_2x_2*\dots*\psi_{n-1}x_{n-1}*u*\psi_nx_n $$ for some invertible element $u$ of the semigroup $S(*)$ and certain of its automorphisms or inverse automorphisms $\psi_2,\dots,\psi_n$ for which $\psi_ku=u$. Bibliography: 13 titles.
@article{SM_1973_21_3_a3,
     author = {L. M. Gluskin and L. N. \`El'kin},
     title = {Positional operatives with invertible elements},
     journal = {Sbornik. Mathematics},
     pages = {412--422},
     year = {1973},
     volume = {21},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a3/}
}
TY  - JOUR
AU  - L. M. Gluskin
AU  - L. N. Èl'kin
TI  - Positional operatives with invertible elements
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 412
EP  - 422
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1973_21_3_a3/
LA  - en
ID  - SM_1973_21_3_a3
ER  - 
%0 Journal Article
%A L. M. Gluskin
%A L. N. Èl'kin
%T Positional operatives with invertible elements
%J Sbornik. Mathematics
%D 1973
%P 412-422
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1973_21_3_a3/
%G en
%F SM_1973_21_3_a3
L. M. Gluskin; L. N. Èl'kin. Positional operatives with invertible elements. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 412-422. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a3/

[1] A. G. Kurosh, Obschaya algebra, izd-vo MGU, Moskva, 1969–1970

[2] L. M. Gluskin, “O pozitsionnykh operativakh”, DAN SSSR, 157:4 (1964), 767–770 | MR | Zbl

[3] L. M. Gluskin, “Pozitsionnye operativy”, Matem. sb., 68 (110) (1965), 444–472 | MR | Zbl

[4] L. M. Gluskin, “O pozitsionnykh operativakh, II”, DAN SSSR, 182:5 (1968), 1000–1003 | MR | Zbl

[5] A. K. Slipenko, “Pozitsiini operativi vidobrazhen”, DAN URSR, seriya A, 2 (1969), 143–147 | MR

[6] V. Ya. Shvarts, “O provodimosti operativa”, Izv. VUZov, Matematika, 4 (119) (1972), 126

[7] V. D. Belousov, “Pozitsionnye algebry s podstanovkami”, Voprosy teorii kvazigrupp i lup, Kishinev, 1970 (1971), 131–139 | MR

[8] E. L. Post, “Poliadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR | Zbl

[9] V. V. Vagner, “Teoriya obobschennykh grud i obobschennykh grupp”, Matem. sb., 32 (74) (1953), 545–632 | MR | Zbl

[10] T. Evans, “Abstract mean values”, Duke Math. J., 30:1 (1963), 331–347 | DOI | MR | Zbl

[11] A. M. Turing, “The extensions of a group”, Compositio Math., 5 (1938), 357–367 | MR | Zbl

[12] S. A. Chunikhin, “K teorii neassotsiativnykh $n$-grupp s postulatom $K$”, DAN SSSR, 48:1 (1945), 7–10

[13] J. Timm, “Zur gruppentheoretischen Beschreibung $n$-stelliger Strukturen”, Publ. math., 17:1–4 (1970), 183–192 | MR