Positional operatives with invertible elements
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 412-422
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of this paper is a proof of the fact that if $S$ is a $\Pi$-operative (i.e. an $n$-ary operation on a set $S$ satisfying the identities
\begin{multline*}
x_1\dots x_{k-1}(y_1\dots y_n)x_{k+1}\dots x_n=\\
=(x_{\sigma_k1}\dots x_{\sigma_k(k-1)}y_{\pi_k1}\dots y_{\pi_k(n-k+1)})\dots y_{\pi_kn}x_{\sigma_k(k+1)}\dots x_{\sigma_kn},
\end{multline*}
where $\sigma_k$ and $\pi_k$ are permutations, $k=1,\dots,n$, $\sigma_1=\pi_1=\varepsilon$, and $\sigma_kk=k$), and if $S$ contains a two-sided invertible element $\alpha$ (i.e. $S=\alpha S\dots S = S\dots S\alpha$), then a semigroup operation $*$ can be defined on $S$ such that
$$
x_1x_2\dots x_n=x_1*\psi_2x_2*\dots*\psi_{n-1}x_{n-1}*u*\psi_nx_n
$$
for some invertible element $u$ of the semigroup $S(*)$ and certain of its automorphisms or inverse automorphisms $\psi_2,\dots,\psi_n$ for which $\psi_ku=u$.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_1973_21_3_a3,
     author = {L. M. Gluskin and L. N. \`El'kin},
     title = {Positional operatives with invertible elements},
     journal = {Sbornik. Mathematics},
     pages = {412--422},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_21_3_a3/}
}
                      
                      
                    L. M. Gluskin; L. N. Èl'kin. Positional operatives with invertible elements. Sbornik. Mathematics, Tome 21 (1973) no. 3, pp. 412-422. http://geodesic.mathdoc.fr/item/SM_1973_21_3_a3/
