The principle of convergence ``almost everywhere'' in Lie groups
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 543-555
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $U$ be a neighborhood of the identity in an arbitrary Lie group with a fixed system of local coordinates $(x)$ and let $\xi_n$ be independent random variables taking values in the neighborhood $U$ and $\widetilde\xi_n$ be real variables naturally induced by the variables $\xi_n$ in the system of local coordinates $(x)$. If the $\widetilde\xi_n$ have zero means, then the product $\xi_1\cdots\xi_n$, $n\to\infty$, converges or diverges a.e. with
$$
\widetilde\xi_1+\widetilde\xi_2+\dots+\widetilde\xi_n+\cdots.
$$ Bibliography: 6 titles.
@article{SM_1973_20_4_a3,
author = {V. M. Maksimov},
title = {The principle of convergence ``almost everywhere'' in {Lie} groups},
journal = {Sbornik. Mathematics},
pages = {543--555},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {1973},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a3/}
}
V. M. Maksimov. The principle of convergence ``almost everywhere'' in Lie groups. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 543-555. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a3/