The principle of convergence ``almost everywhere'' in Lie groups
Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 543-555

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U$ be a neighborhood of the identity in an arbitrary Lie group with a fixed system of local coordinates $(x)$ and let $\xi_n$ be independent random variables taking values in the neighborhood $U$ and $\widetilde\xi_n$ be real variables naturally induced by the variables $\xi_n$ in the system of local coordinates $(x)$. If the $\widetilde\xi_n$ have zero means, then the product $\xi_1\cdots\xi_n$, $n\to\infty$, converges or diverges a.e. with $$ \widetilde\xi_1+\widetilde\xi_2+\dots+\widetilde\xi_n+\cdots. $$ Bibliography: 6 titles.
@article{SM_1973_20_4_a3,
     author = {V. M. Maksimov},
     title = {The principle of convergence ``almost everywhere'' in {Lie} groups},
     journal = {Sbornik. Mathematics},
     pages = {543--555},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_20_4_a3/}
}
TY  - JOUR
AU  - V. M. Maksimov
TI  - The principle of convergence ``almost everywhere'' in Lie groups
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 543
EP  - 555
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_20_4_a3/
LA  - en
ID  - SM_1973_20_4_a3
ER  - 
%0 Journal Article
%A V. M. Maksimov
%T The principle of convergence ``almost everywhere'' in Lie groups
%J Sbornik. Mathematics
%D 1973
%P 543-555
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_20_4_a3/
%G en
%F SM_1973_20_4_a3
V. M. Maksimov. The principle of convergence ``almost everywhere'' in Lie groups. Sbornik. Mathematics, Tome 20 (1973) no. 4, pp. 543-555. http://geodesic.mathdoc.fr/item/SM_1973_20_4_a3/