Use of $(p,l)$-capacity in problems of the theory of exceptional sets
Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 547-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider exceptional sets occurring in the solution of problems of uniqueness and approximation of analytic functions, as well as in problems of convergence of Fourier series and of removal of singularities of analytic and polyharmonic functions. In the formulation of the theorems the smallness of exceptional sets is characterized by a special set function, the so-called $(p,l)$-capacity. Bibliography: 36 titles.
@article{SM_1973_19_4_a3,
     author = {V. G. Maz'ya and V. P. Havin},
     title = {Use of $(p,l)$-capacity in problems of the theory of exceptional sets},
     journal = {Sbornik. Mathematics},
     pages = {547--580},
     year = {1973},
     volume = {19},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_4_a3/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - V. P. Havin
TI  - Use of $(p,l)$-capacity in problems of the theory of exceptional sets
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 547
EP  - 580
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_4_a3/
LA  - en
ID  - SM_1973_19_4_a3
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A V. P. Havin
%T Use of $(p,l)$-capacity in problems of the theory of exceptional sets
%J Sbornik. Mathematics
%D 1973
%P 547-580
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1973_19_4_a3/
%G en
%F SM_1973_19_4_a3
V. G. Maz'ya; V. P. Havin. Use of $(p,l)$-capacity in problems of the theory of exceptional sets. Sbornik. Mathematics, Tome 19 (1973) no. 4, pp. 547-580. http://geodesic.mathdoc.fr/item/SM_1973_19_4_a3/

[1] V. G. Mazya, V. P. Khavin, “Nelineinaya teoriya potentsiala”, Uspekhi matem. nauk, XXVII:6 (168) (1972), 67–138

[2] L. Karleson, Izbrannye problemy teorii isklyuchitelnykh mnozhestv, izd-vo «Mir», Moskva, 1971 | MR

[3] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, izd-vo «Nauka», Moskva, 1966 | MR

[4] J. Deny, J. L. Lions, “Les espaces du type de Beppo Levi”, Ann. Inst. Fourier, 5 (1955), 305–370 | MR

[5] L. Carleson, “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87:3–4 (1952), 325–345 | DOI | MR | Zbl

[6] S. N. Mergelyan, “O polnote sistem analiticheskikh funktsii”, Uspekhi matem. nauk, VIII:4 (57) (1953), 3–63 | MR

[7] V. G. Mazya, V. P. Khavin, “Nelineinyi analog nyutonovskogo potentsiala i metricheskie svoistva $(p, l)$-emkosti”, DAN SSSR, 194:4 (1970), 770–773

[8] J. Serrin, “Local behaviour of solutions of quasu-linear equations”, Acta Math., 111:3–4 (1964), 247–302 | DOI | MR | Zbl

[9] J. Serrin, “Removable singularities of solutions of elliptic equations”, Arch. Rat. Mech. Anal., 17:1 (1964), 67–78 | DOI | MR | Zbl

[10] V. G. Mazya, “Klassy mnozhestv i mer, svyazannye s teoremami vlozheniya”, Teoremy vlozheniya i ikh prilozheniya, Trudy simpoziuma po teoremam vlozheniya (Baku, 1966 g.), izd-vo «Nauka», Moskva, 1970

[11] V. G. Mazya, “Ob ustranimykh osobennostyakh ogranichennykh reshenii kvazilineinykh ellipticheskikh uravnenii lyubogo poryadka”, Zapiski nauchnykh seminarov LOMI, 27 (1972), 116–130

[12] W. Littman, “Polar sets and removable singularities of partial differential equations”, Arkiv Math., 7:1 (1967), 1–9 | DOI | MR | Zbl

[13] W. Littman, “A connection between $\alpha$-capacity and $m-p$-polarity”, Bull. Amer. Math. Soc., 73:6 (1967), 862–866 | DOI | MR | Zbl

[14] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1–2 (1970), 39–56 | DOI | MR | Zbl

[15] V. G. Mazya, “$p$-provodimost i teoremy vlozheniya nekotorykh funktsionalnykh prostranstv v prostranstvo $C$”, DAN SSSR, 140:2 (1961), 299–302

[16] V. G. Mazya, V. P. Khavin, “Ob approksimatsii v srednem analiticheskimi funktsiyami”, Vestnik LGU, 13:3 (1968), 62–74

[17] V. G. Mazya, V. P. Khavin, “K teoreme edinstvennosti L. Karlesona dlya analiticheskikh funktsii s konechnym integralom Dirikhle”, Problemy matematicheskogo analiza, no. 2, izd-vo LGU, Leningrad, 1969, 153–156

[18] G. Choquet, “Theory of capacities”, Ann. Inst. Fourier, 5 (1955), 131–292 | MR

[19] A. M. Molchanov, “Ob usloviyakh diskretnosti spektra samosopryazhennykh differentsialnykh uravnenii vtorogo poryadka”, Trudy Mosk. matem. obschestva, II (1953), 201–233

[20] V. G. Mazya, “O zadache Dirikhle dlya ellipticheskikh uravnenii proizvolnogo poryadka v neogranichennykh oblastyakh”, DAN SSSR, 150:6 (1963), 1221–1224

[21] L. Carleson, “A representation formula for the Dirichlet integrals”, Math. Z., 73:2 (1960), 190–196 | DOI | MR | Zbl

[22] H. Shapiro, A. Shields, “On the zeros of functions with finite Dirichlet integral and some related function spaces”, Math. Z., 80:2 (1962), 217–229 | DOI | MR | Zbl

[23] S. N. Mergelyan, “Priblizheniya funktsii kompleksnogo peremennogo”, Matematika v SSSR za 40 let, t. I, Fizmatgiz, Moskva, 1959, 395–396

[24] A. L. Shaginyan, “Ob odnoi zadache teorii priblizhenii v kompleksnoi oblasti”, Sib. matem. zh., I:3 (1960), 523–524

[25] G. Shapiro, “Nekotorye zamechaniya o vesovoi polinomialnoi approksimatsii golomorfnykh funktsii”, Matem. sb., 73 (115) (1967), 320–330 | Zbl

[26] S. O. Sinanyan, “Approksimatsii analiticheskimi funktsiyami i polinomami v srednem po ploschadi”, Matem. sb., 69 (111) (1966), 546–578 | Zbl

[27] S. O. Sinanyan, “Priblizhenie mnogochlenami v srednem po ploschadi”, Matem. sb., 82 (124) (1970), 444–455 | Zbl

[28] V. P. Khavin, “Approksimatsiya mnogochlenami v srednem v nekotorykh nekarateodorievykh oblastyakh. I; II”, Izv. VUZov, Matematika, 1968, no. 9, 86–93 | MR | Zbl

[29] V. G. Mazya, V. P. Khavin, “Ob approksimatsii v srednem garmonicheskimi funktsiyami”, Zapiski nauchnykh seminarov LOMI AN SSSR, 5 (1967), 196–200

[30] V. G. Mazya, V. P. Khavin, “Approksimatsiya garmonicheskimi funktsiyami v srednem”, Zapiski nauchnykh seminarov LOMI AN SSSR, 30 (1972), 91–105

[31] M. Brelo, Osnovy klassicheskoi teorii potentsiala, izd-vo «Mir», Moskva, 1964 | MR

[32] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Gostekhizdat, Moskva–Leningrad, 1941

[33] S. Warschawski, “On conformal mapping of regions bounded by smooth curves”, Proc. Amer. Math. Soc., 2:1 (1951), 254–261 | DOI | MR | Zbl

[34] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, Moskva, 1958

[35] V. G. Mazya, V. P. Khavin, “O nelineinykh potentsialakh i $(p, l)$-emkosti”, Vestnik LGU, 19:13 (1972), 46–51

[36] A. Zigmund, Trigonometricheskie ryady, t. I, izd-vo «Mir», Moskva, 1965 | MR