Monotonicity in the theory of almost periodic solutions of nonlinear operator equations
Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 209-223

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Banach space with a strictly convex norm we consider a nonlinear equation $u'+A(t)u=0$ of general form. Suppose that a “monotonicity” condition is satisfied: for any two solutions $u_1(t)$ and $u_2(t)$ the function $g(t)=\|u_1(t)-u_2(t)\|$ is nonincreasing with respect to $t$; suppose $A(t)$ is almost periodic (in some sense) with respect to $t$. The basic theorem reads as follows: given strong (weak) continuity of the solutions with respect to the initial conditions and the coefficients, there exists at least one almost periodic solution if there exists a compact (weakly compact) solution on $t\geqslant0$. Bibliography: 26 titles.
@article{SM_1973_19_2_a4,
     author = {V. V. Zhikov},
     title = {Monotonicity in the theory of almost periodic solutions of nonlinear operator equations},
     journal = {Sbornik. Mathematics},
     pages = {209--223},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_2_a4/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Monotonicity in the theory of almost periodic solutions of nonlinear operator equations
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 209
EP  - 223
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_2_a4/
LA  - en
ID  - SM_1973_19_2_a4
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Monotonicity in the theory of almost periodic solutions of nonlinear operator equations
%J Sbornik. Mathematics
%D 1973
%P 209-223
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_2_a4/
%G en
%F SM_1973_19_2_a4
V. V. Zhikov. Monotonicity in the theory of almost periodic solutions of nonlinear operator equations. Sbornik. Mathematics, Tome 19 (1973) no. 2, pp. 209-223. http://geodesic.mathdoc.fr/item/SM_1973_19_2_a4/