On some differential-operator equations of arbitrary order
Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 1-21

Voir la notice de l'article provenant de la source Math-Net.Ru

On the half-line $(0,+\infty)$ we investigate the following equation in a Banach space: \begin{equation} \sum^s_{j=0}Aj\frac{d^ju(t)}{dt^j}=h(t),\quad s\geqslant1, \end{equation} where $A_0,\dots,A_s$ are closed operators which commute with $\frac d{dt}$. We consider the following classes of equations: parabolic, inverse parabolic, hyperbolic, quasi-elliptic, and quasi-hyperbolic. We present boundary value problems for these classes and prove that they are well-posed. The proofs are based on a solvability theorem for the operator equation $\sum^s_{j=0}A_jB^ju=h $, where $B$ is a closed operator. Bibliography: 20 titles.
@article{SM_1973_19_1_a0,
     author = {Yu. A. Dubinskii},
     title = {On some differential-operator equations of arbitrary order},
     journal = {Sbornik. Mathematics},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1973_19_1_a0/}
}
TY  - JOUR
AU  - Yu. A. Dubinskii
TI  - On some differential-operator equations of arbitrary order
JO  - Sbornik. Mathematics
PY  - 1973
SP  - 1
EP  - 21
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1973_19_1_a0/
LA  - en
ID  - SM_1973_19_1_a0
ER  - 
%0 Journal Article
%A Yu. A. Dubinskii
%T On some differential-operator equations of arbitrary order
%J Sbornik. Mathematics
%D 1973
%P 1-21
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1973_19_1_a0/
%G en
%F SM_1973_19_1_a0
Yu. A. Dubinskii. On some differential-operator equations of arbitrary order. Sbornik. Mathematics, Tome 19 (1973) no. 1, pp. 1-21. http://geodesic.mathdoc.fr/item/SM_1973_19_1_a0/