On~representing entire functions of several variables by Dirichlet series
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 589-602
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $F(z_1,z_2)$ be an entire function of two complex variables. Let us take the proximate order
$$
\rho(r)=1+\frac{\psi(\ln r)}{\ln r},\quad\psi(u)\uparrow\infty,\quad\underset{x\to\infty}{\psi'(x)}\downarrow0,\quad\frac{\psi(x)}x\to0,
$$
and then define positive numbers $\mu_k$ ($k\geqslant1$) so that $\mu_n^{s(\mu_n)}=n/\tau$, $0\tau\infty$. Let us choose an integer $m>2$ and form the numbers $\mu_ne^{2\pi ik/m}$ ($k=0,1,\dots,m-1$; $n=1,2,\dots$). Let $\lambda_k$ ($k\geqslant1$) be arranged these numbers in the order of decreasing modulus. For a proper choice of the function $\psi(x)$ and the number $\tau$, the representation
$$
F(z_1,z_2)=\sum_{n,m=1}^\infty a_{n,m}e^{\lambda_nz_1+\lambda_mz_2}
$$
holds in the whole space $\mathbf C^2$.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1972_18_4_a3,
     author = {A. F. Leont'ev},
     title = {On~representing entire functions of several variables by {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {589--602},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_4_a3/}
}
                      
                      
                    A. F. Leont'ev. On~representing entire functions of several variables by Dirichlet series. Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 589-602. http://geodesic.mathdoc.fr/item/SM_1972_18_4_a3/
