On~representing entire functions of several variables by Dirichlet series
Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 589-602

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F(z_1,z_2)$ be an entire function of two complex variables. Let us take the proximate order $$ \rho(r)=1+\frac{\psi(\ln r)}{\ln r},\quad\psi(u)\uparrow\infty,\quad\underset{x\to\infty}{\psi'(x)}\downarrow0,\quad\frac{\psi(x)}x\to0, $$ and then define positive numbers $\mu_k$ ($k\geqslant1$) so that $\mu_n^{s(\mu_n)}=n/\tau$, $0\tau\infty$. Let us choose an integer $m>2$ and form the numbers $\mu_ne^{2\pi ik/m}$ ($k=0,1,\dots,m-1$; $n=1,2,\dots$). Let $\lambda_k$ ($k\geqslant1$) be arranged these numbers in the order of decreasing modulus. For a proper choice of the function $\psi(x)$ and the number $\tau$, the representation $$ F(z_1,z_2)=\sum_{n,m=1}^\infty a_{n,m}e^{\lambda_nz_1+\lambda_mz_2} $$ holds in the whole space $\mathbf C^2$. Bibliography: 6 titles.
@article{SM_1972_18_4_a3,
     author = {A. F. Leont'ev},
     title = {On~representing entire functions of several variables by {Dirichlet} series},
     journal = {Sbornik. Mathematics},
     pages = {589--602},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_4_a3/}
}
TY  - JOUR
AU  - A. F. Leont'ev
TI  - On~representing entire functions of several variables by Dirichlet series
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 589
EP  - 602
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_4_a3/
LA  - en
ID  - SM_1972_18_4_a3
ER  - 
%0 Journal Article
%A A. F. Leont'ev
%T On~representing entire functions of several variables by Dirichlet series
%J Sbornik. Mathematics
%D 1972
%P 589-602
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_4_a3/
%G en
%F SM_1972_18_4_a3
A. F. Leont'ev. On~representing entire functions of several variables by Dirichlet series. Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 589-602. http://geodesic.mathdoc.fr/item/SM_1972_18_4_a3/