Example of an entire function with given indicator and lower indicator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 541-558
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, the following result is proved.
Theorem. Let $h_1(\varphi)$ and $h_2(\varphi)$ be two $\rho$-trigonometrically convex functions. There is an entire function $f(z)$ of finite order $\rho$ such that its indicator $h_f(\varphi)=\max[h_1(\varphi),h_2(\varphi)]$ and its lower indicator $\underline h_f(\varphi)=\min[h_1(\varphi),h_2(\varphi)]$.
Applications of this theorem are given.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1972_18_4_a0,
     author = {V. S. Azarin},
     title = {Example of an entire function with given indicator and lower indicator},
     journal = {Sbornik. Mathematics},
     pages = {541--558},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_4_a0/}
}
                      
                      
                    V. S. Azarin. Example of an entire function with given indicator and lower indicator. Sbornik. Mathematics, Tome 18 (1972) no. 4, pp. 541-558. http://geodesic.mathdoc.fr/item/SM_1972_18_4_a0/
