Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 327-348

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be a solution of the equation \begin{equation*} S*f=0 \end{equation*} with characteristic function $\varphi$, $D_f$ is the trace which is left by the associated diagram $D$ of the function $\varphi$ under a continuous translational displacement as a geometric figure on the Riemann surface of the function $f$. We show that $D_f$ is a one-sheeted simply connected region; the function $f$ can be uniformly approximated inside $D_f$ by linear combinations of elementary solutions. This result is a corollary of a more general theorem on the extension of spectral synthesis which is proved in this paper. Figures: 2. Bibliography: 14 titles.
@article{SM_1972_17_3_a0,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Invariant subspaces of analytic functions. {III.~On~the} extension of spectral synthesis},
     journal = {Sbornik. Mathematics},
     pages = {327--348},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 327
EP  - 348
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/
LA  - en
ID  - SM_1972_17_3_a0
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis
%J Sbornik. Mathematics
%D 1972
%P 327-348
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/
%G en
%F SM_1972_17_3_a0
I. F. Krasichkov-Ternovskii. Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 327-348. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/