Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 327-348
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f$ be a solution of the equation
\begin{equation*}
S*f=0
\end{equation*}
with characteristic function $\varphi$, $D_f$ is the trace which is left by the associated diagram $D$ of the function $\varphi$ under a continuous translational displacement as a geometric figure on the Riemann surface of the function $f$. We show that $D_f$ is a one-sheeted simply connected region; the function $f$ can be uniformly approximated inside $D_f$ by linear combinations of elementary solutions. This result is a corollary of a more general theorem on the extension of spectral synthesis which is proved in this paper.
Figures: 2.
Bibliography: 14 titles.
@article{SM_1972_17_3_a0,
author = {I. F. Krasichkov-Ternovskii},
title = {Invariant subspaces of analytic functions. {III.~On~the} extension of spectral synthesis},
journal = {Sbornik. Mathematics},
pages = {327--348},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/}
}
TY - JOUR AU - I. F. Krasichkov-Ternovskii TI - Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis JO - Sbornik. Mathematics PY - 1972 SP - 327 EP - 348 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/ LA - en ID - SM_1972_17_3_a0 ER -
I. F. Krasichkov-Ternovskii. Invariant subspaces of analytic functions. III.~On~the extension of spectral synthesis. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 327-348. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/