Invariant subspaces of analytic functions. III. On the extension of spectral synthesis
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 327-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f$ be a solution of the equation \begin{equation*} S*f=0 \end{equation*} with characteristic function $\varphi$, $D_f$ is the trace which is left by the associated diagram $D$ of the function $\varphi$ under a continuous translational displacement as a geometric figure on the Riemann surface of the function $f$. We show that $D_f$ is a one-sheeted simply connected region; the function $f$ can be uniformly approximated inside $D_f$ by linear combinations of elementary solutions. This result is a corollary of a more general theorem on the extension of spectral synthesis which is proved in this paper. Figures: 2. Bibliography: 14 titles.
@article{SM_1972_17_3_a0,
     author = {I. F. Krasichkov-Ternovskii},
     title = {Invariant subspaces of analytic functions. {III.~On~the} extension of spectral synthesis},
     journal = {Sbornik. Mathematics},
     pages = {327--348},
     year = {1972},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - Invariant subspaces of analytic functions. III. On the extension of spectral synthesis
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 327
EP  - 348
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/
LA  - en
ID  - SM_1972_17_3_a0
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T Invariant subspaces of analytic functions. III. On the extension of spectral synthesis
%J Sbornik. Mathematics
%D 1972
%P 327-348
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/
%G en
%F SM_1972_17_3_a0
I. F. Krasichkov-Ternovskii. Invariant subspaces of analytic functions. III. On the extension of spectral synthesis. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 327-348. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a0/

[1] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87(129) (1972), 459–489

[2] I. F. Krasichkov-Ternovskii, “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130) (1972), 3–30

[3] D. G. Dickson, “Analytic mean periodic functions”, Trans. Amer. Math. Soc., 110:2 (1964), 361–374 | DOI | MR | Zbl

[4] A. F. Leontev, “Ob odnom svoistve edinstvennosti”, Matem. sb., 72(114) (1967), 237–249 | MR | Zbl

[5] J. P. Kahane, Sur quelques problémes d'unicité et de prolongement, relatifs aux fonctions approchables par des sommes d'exponentielles, Théses, Durand, 1954

[6] J. P. Ritt, “On a general class of linear homogeneous differential equations of infinite order with constant coefficients”, Trans. Amer. Math. Soc., 18:1 (1917), 27–49 | DOI | MR | Zbl

[7] G. Polya, “Eine Verallgemeinerung des Fabryschen Liickensatzes”, Nachr. Akad. Wiss. Gottingen, Math-Phys. Klasse, 2 (1927), 187–196

[8] M. G. VaLiron, “Sur les solutions des equations differentielles linéires d'ordre infini et à coefficients constants”, Ann. Ecole Norm. Super, 46 (1929), 25–53 | MR | Zbl

[9] A. O. Gelfond, “Lineinye differentsialnye uravneniya s postoyannymi koeffitsientami i asimptoticheskie periody tselykh funktsii”, Trudy Matem. in-ta im. V. A. Steklova, XXXVIII, 1951, 42–67 | MR

[10] A. F. Leontev, Ryady polinomov Dirikhle i ikh obobscheniya, Trudy Matem. in-ta im. V. A Steklova, XXXIX, 1951 | MR | Zbl

[11] A. F. Leontev, “O predstavlenii funktsii ryadami polinomov Dirikhle”, Matem. sb., 70(142) (1966), 132–144 | MR | Zbl

[12] G. Polya, “Untersuchungen iiber Lucken und Singularitaten von Potenzreihen”, Math. Z., 29 (1928), 549–640 | DOI | MR

[13] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[14] N. Aronszajn, “Sur les decompositions des fonctions analytiques uniformes et sur leurs applications”, Acta Math., 65:1–2 (1935), 1–156. | DOI | MR | Zbl