On the behavior of the solution of a boundary value problem when $t\to\infty$
Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 545-572 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates the solution of the boundary value problem $\partial\Delta u/\partial t+\partial u/\partial x=f(x,y)$, $u(x,y,0)=u_0(x,y)$, $u\mid_\Gamma=0$ for the rectangle $0, $0. It is shown that everywhere outside of neighborhoods of the boundaries $y=0$, $y=b$ and $x=a$ the solution converges uniformly to $-\int_x^a f(\xi,y)\,d\xi$ as $t\to\infty$. Near the indicated boundaries there are boundary layers of width $t^{-1/2}$ and $t^{-1}$ respectively. Explicit formulas are given for the first term of an asymptotic expansion of the solution in each of these boundary layers. Bibliography: 4 titles.
@article{SM_1972_16_4_a3,
     author = {A. M. Il'in},
     title = {On the behavior of the solution of a~boundary value problem when~$t\to\infty$},
     journal = {Sbornik. Mathematics},
     pages = {545--572},
     year = {1972},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/}
}
TY  - JOUR
AU  - A. M. Il'in
TI  - On the behavior of the solution of a boundary value problem when $t\to\infty$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 545
EP  - 572
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/
LA  - en
ID  - SM_1972_16_4_a3
ER  - 
%0 Journal Article
%A A. M. Il'in
%T On the behavior of the solution of a boundary value problem when $t\to\infty$
%J Sbornik. Mathematics
%D 1972
%P 545-572
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/
%G en
%F SM_1972_16_4_a3
A. M. Il'in. On the behavior of the solution of a boundary value problem when $t\to\infty$. Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 545-572. http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/

[1] M. I. Lighthill, “On waves generated in dispersive systems by travelling forcing effect with applications to the dynamics on rotating fluids”, J. Fluid Mech., 27:4 (1967), 725–752 | DOI | MR | Zbl

[2] T. I. Zelenyak, V. P. Mikhailov, “Asimptoticheskoe povedenie reshenii nekotorykh kraevykh zadach matematicheskoi fiziki pri $t\to\infty$”, Differentsialnye uravneniya s chastnymi proizvodnymi, Trudy simpoziuma, posvyaschennogo 60-letiyu akademika S. L. Soboleva, 96–118 | Zbl

[3] A. M. Ilin, “Ob asimptotike resheniya odnoi kraevoi zadachi”, Matem. zametki, 8:3 (1970), 273–284 | Zbl

[4] I. S. Gpadshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, Moskva, 1963