On the behavior of the solution of a boundary value problem when $t\to\infty$
Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 545-572
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper investigates the solution of the boundary value problem $\partial\Delta u/\partial t+\partial u/\partial x=f(x,y)$, $u(x,y,0)=u_0(x,y)$, $u\mid_\Gamma=0$ for the rectangle $0, $0. It is shown that everywhere outside of neighborhoods of the boundaries $y=0$, $y=b$ and $x=a$ the solution converges uniformly to $-\int_x^a f(\xi,y)\,d\xi$ as $t\to\infty$. Near the indicated boundaries there are boundary layers of width $t^{-1/2}$ and $t^{-1}$ respectively. Explicit formulas are given for the first term of an asymptotic expansion of the solution in each of these boundary layers. Bibliography: 4 titles.
@article{SM_1972_16_4_a3,
author = {A. M. Il'in},
title = {On the behavior of the solution of a~boundary value problem when~$t\to\infty$},
journal = {Sbornik. Mathematics},
pages = {545--572},
year = {1972},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/}
}
A. M. Il'in. On the behavior of the solution of a boundary value problem when $t\to\infty$. Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 545-572. http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/
[1] M. I. Lighthill, “On waves generated in dispersive systems by travelling forcing effect with applications to the dynamics on rotating fluids”, J. Fluid Mech., 27:4 (1967), 725–752 | DOI | MR | Zbl
[2] T. I. Zelenyak, V. P. Mikhailov, “Asimptoticheskoe povedenie reshenii nekotorykh kraevykh zadach matematicheskoi fiziki pri $t\to\infty$”, Differentsialnye uravneniya s chastnymi proizvodnymi, Trudy simpoziuma, posvyaschennogo 60-letiyu akademika S. L. Soboleva, 96–118 | Zbl
[3] A. M. Ilin, “Ob asimptotike resheniya odnoi kraevoi zadachi”, Matem. zametki, 8:3 (1970), 273–284 | Zbl
[4] I. S. Gpadshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, Moskva, 1963