On the behavior of the solution of a~boundary value problem when~$t\to\infty$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 545-572
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper investigates the solution of the boundary value problem $\partial\Delta u/\partial t+\partial u/\partial x=f(x,y)$, $u(x,y,0)=u_0(x,y)$, $u\mid_\Gamma=0$ for the rectangle $0$, $0$. It is shown that everywhere outside of neighborhoods of the boundaries $y=0$, $y=b$ and $x=a$ the solution converges uniformly to $-\int_x^a f(\xi,y)\,d\xi$ as $t\to\infty$. Near the indicated boundaries there are boundary layers of width $t^{-1/2}$ and $t^{-1}$ respectively. Explicit formulas are given for the first term of an asymptotic expansion of the solution in each of these boundary layers.
Bibliography: 4 titles.
			
            
            
            
          
        
      @article{SM_1972_16_4_a3,
     author = {A. M. Il'in},
     title = {On the behavior of the solution of a~boundary value problem when~$t\to\infty$},
     journal = {Sbornik. Mathematics},
     pages = {545--572},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/}
}
                      
                      
                    A. M. Il'in. On the behavior of the solution of a~boundary value problem when~$t\to\infty$. Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 545-572. http://geodesic.mathdoc.fr/item/SM_1972_16_4_a3/
