Discontinuous solutions of nonlinear mixed problems for hyperbolic equations on a~plane
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 159-180
Voir la notice de l'article provenant de la source Math-Net.Ru
In $\overline\Pi_{\frac12}=\{0\leqslant x\leqslant1,\ 0\leqslant t\leqslant\frac12\}$ we consider the problem
\begin{gather}
u_{xx}-u_{tt}=A_1(x,t,u)u_x+A_2(x,t,u)u_t+A_3(x,t,u),
\\
u(x,0)=\varphi_0(x),\quad u_t(x,0)=\varphi_1(x)\quad\text{for}\quad0\leqslant x\leqslant1,
\\
a_i(u)u_x+b_i(u)u_t=f_i(t,u)\quad\text{for}\quad x=i\enskip(i=0,1),
\end{gather}
here $A_j, \varphi_i, a_i, b_i$ and $f_i$ are sufficiently smooth functions, $h_0=b_0-a_0$ has only isolated zeros on $R^1$, and $h_1=b_1+a_1$ does not have zeros on $R^1$. It is assumed that in $\Pi_{T^*}=\{0\leqslant x\leqslant 1,\ 0\leqslant t$, $0$, there exists a solution $\mathring u\in C_2(\Pi_{T^*})$ of problem (1)–(3), where $\sup|\mathring u|\infty$, $|h_0(\mathring u(0,t))|>0$ for $0\leqslant t $, and $\inf_{0\leqslant t$. It is shown that $\mathring u\in C(\overline\Pi_{T^*})$ and $\mathring v=\mathring u_x+\mathring u_t\in C(\overline\Pi_{T^*})$, and that if $\Gamma_0=f_0(T^*,u(0,T^*))-a_0(\mathring u(0,T^*))\mathring u(0,T^*)\ne0$, there are not even continuous generalized solutions of problem (1)–(3) in $\overline\Pi_T$ for any $T$, $T^*$. For $\Gamma_0\ne0$ the author introduces a definition and establishes existence and uniqueness theorems for the discontinuous solution of (1)–(3) in $\overline\Pi_{\frac12}$.
Bibliography: 9 titles.
@article{SM_1972_16_2_a1,
author = {V. N. Gol'dberg},
title = {Discontinuous solutions of nonlinear mixed problems for hyperbolic equations on a~plane},
journal = {Sbornik. Mathematics},
pages = {159--180},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a1/}
}
V. N. Gol'dberg. Discontinuous solutions of nonlinear mixed problems for hyperbolic equations on a~plane. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 159-180. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a1/