Imbedding of one continuous decomposition of Euclidean $E^n$-space into another
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 543-551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proves that if $G$ is a continuous decomposition of $E^n$ ($n>2$) into zero-dimensional compacta such that $\dim P_G(G^*)=0$, then the space $E^n/G$ is embeddable in $E^{n+2}$. He employs the notion of one embedding of a continuous decomposition into another. Furthermore, he considers several sufficient conditions under which $E^n/G$ is embeddable into $E^{n+1}$. Bibliography: 4 titles.
@article{SM_1970_12_4_a4,
     author = {Van Ni Kyong},
     title = {Imbedding of one continuous decomposition of {Euclidean} $E^n$-space into another},
     journal = {Sbornik. Mathematics},
     pages = {543--551},
     year = {1970},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a4/}
}
TY  - JOUR
AU  - Van Ni Kyong
TI  - Imbedding of one continuous decomposition of Euclidean $E^n$-space into another
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 543
EP  - 551
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_4_a4/
LA  - en
ID  - SM_1970_12_4_a4
ER  - 
%0 Journal Article
%A Van Ni Kyong
%T Imbedding of one continuous decomposition of Euclidean $E^n$-space into another
%J Sbornik. Mathematics
%D 1970
%P 543-551
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1970_12_4_a4/
%G en
%F SM_1970_12_4_a4
Van Ni Kyong. Imbedding of one continuous decomposition of Euclidean $E^n$-space into another. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 543-551. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a4/

[1] Van Ni Kyong, “Nekotorye nepreryvnye razbieniya prostranstva $E^n$”, Matem. zametki, 10 (1971), 315–326 | MR | Zbl

[2] L. V. Keldysh, Topologicheskie vlozheniya v evklidovo prostranstvo, Trudy Matem. in-ta im. V. A. Steklova, LXXXI, 1966

[3] Steve Armentrout, “On embedding decomposition spaces of $E^n$ in $E^{n+1}$”, Fundam. Math., LXI (1967), 1–20 | MR

[4] R. H. Bing, “Upper Semicontinuous decompositions of $E^3$”, Ann. Math., 65 (1957), 363–374 | DOI | MR | Zbl