Imbedding of one continuous decomposition of Euclidean $E^n$-space into another
Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 543-551
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proves that if $G$ is a continuous decomposition of $E^n$ ($n>2$) into zero-dimensional compacta such that $\dim P_G(G^*)=0$, then the space $E^n/G$ is embeddable in $E^{n+2}$. He employs the notion of one embedding of a continuous decomposition into another. Furthermore, he considers several sufficient conditions under which $E^n/G$ is embeddable into $E^{n+1}$. Bibliography: 4 titles.
@article{SM_1970_12_4_a4,
author = {Van Ni Kyong},
title = {Imbedding of one continuous decomposition of {Euclidean} $E^n$-space into another},
journal = {Sbornik. Mathematics},
pages = {543--551},
year = {1970},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_12_4_a4/}
}
Van Ni Kyong. Imbedding of one continuous decomposition of Euclidean $E^n$-space into another. Sbornik. Mathematics, Tome 12 (1970) no. 4, pp. 543-551. http://geodesic.mathdoc.fr/item/SM_1970_12_4_a4/
[1] Van Ni Kyong, “Nekotorye nepreryvnye razbieniya prostranstva $E^n$”, Matem. zametki, 10 (1971), 315–326 | MR | Zbl
[2] L. V. Keldysh, Topologicheskie vlozheniya v evklidovo prostranstvo, Trudy Matem. in-ta im. V. A. Steklova, LXXXI, 1966
[3] Steve Armentrout, “On embedding decomposition spaces of $E^n$ in $E^{n+1}$”, Fundam. Math., LXI (1967), 1–20 | MR
[4] R. H. Bing, “Upper Semicontinuous decompositions of $E^3$”, Ann. Math., 65 (1957), 363–374 | DOI | MR | Zbl