The embedding of compacta in Euclidean space
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 234-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently the fundamental importance of the $1-ULC$ property of the complementary space in describing a given embedding in $E^n$ has become clear. “Wild” embeddings in $E^n$ are characterized by the absence of the $1-ULC$ property. In this paper “tame” and “wild” embeddings in $E^n$ of arbitrary compacta in codimension at least 3 are defined. For this purpose the notion of the “dimension of embedding” of compacta in $E^n$ is introduced. The main theorem asserts that an embedding of a compactum in $E^n$, $n\geqslant6$, is “wild” if and only if the complementary space is not $1-ULC$. Bibliography: 23 titles.
@article{SM_1970_12_2_a5,
     author = {M. A. Shtan'ko},
     title = {The embedding of compacta in {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {234--254},
     year = {1970},
     volume = {12},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - The embedding of compacta in Euclidean space
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 234
EP  - 254
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/
LA  - en
ID  - SM_1970_12_2_a5
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T The embedding of compacta in Euclidean space
%J Sbornik. Mathematics
%D 1970
%P 234-254
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/
%G en
%F SM_1970_12_2_a5
M. A. Shtan'ko. The embedding of compacta in Euclidean space. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 234-254. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/

[1] P. S. Aleksandrov, “O razmernosti zamknutykh mnozhestv”, Uspekhi matem. nauk, IV:6(34) (1949), 17–88 | MR

[2] P. S. Aleksandrov, Kombinatornaya topologiya, Gostekhizdat, Moskva, 1947 | MR

[3] K. Borsuk, Theory of retracts, Monografie Matemat., 44, Warszawa, 1967 | MR | Zbl

[4] W. Blankenship, “Generalisation of a constraction by Antoine”, Ann. Math., 53 (1951), 276–287 | DOI

[5] A. A. Ivanov, “Izotopiya kompaktov v evklidovykh prostranstvakh”, DAN SSSR, 71:6 (1950), 1021–1022 | MR | Zbl

[6] L. V. Keldysh, Topologicheskie vlozheniya v evklidovo prostranstvo, Trudy Matem. in-ta im. V. A. Steklova, 81, 1966

[7] R. Bing, “Tame Cantor sets in $E^3$”, Pacif. J. Math., 11 (1961), 435–446 | MR | Zbl

[8] E. Zeeman, “Unknotting combinatorial balls”, Ann. Math., 78:3 (1963), 501–526 | DOI | MR | Zbl

[9] E. Zeeman, Seminar in combinatorial topology, ch. 1–7, Inst. Hautes Etudes Sci., 1963

[10] J. Stallings, “On topologically unknotted spheres”, Ann. Math., 77:3 (1963), 490–503 | DOI | MR | Zbl

[11] M. Irwin, “Embeddings of polyhedral manifolds”, Ann. Math., 82:1 (1965), 11–14 | DOI | MR

[12] A. V. Chernavskii, “Gomeomorfizmy evklidova prostranstva. I”, Matem. sb., 68(110) (1965), 581–613

[13] A. V. Chernavskii, “Gomeomorfizmy evklidova prostranstva. II”, Matem. sb., 72(114) (1967), 573–601

[14] A. V. Chernavskii, “Gomeomorfizmy evklidova prostranstva. III”, Matem. sb., 75(117) (1968), 264–295

[15] M. A. Shtanko, “Vlozhenie kompaktov v evklidovo prostranstvo”, DAN SSSR, 186:6 (1969), 1269–1272

[16] J. Dancis, “Approximations and isototpies in the trivial range”, Topol. Seminar Wisconsin, 1965, Univ. Press, Princeton, New Jersey, 1966, 171–187 | MR

[17] McMillan, “Taiminig Cantor sets in $E^n$”, Bull. Amer. Math. Soc., 76:5 (1964), 706–708 | DOI | MR

[18] J. Bryant, C. Seebeck, “Locally nice embeddings of polyhedra”, Quart. J. Math., 19:75 (1968), 257–274 | DOI | MR | Zbl

[19] J. Bryant, “On embedding of compacta in euclidean space”, Proc. Amer. Math., Soc., 23:1 (1969), 46–51 | DOI | MR | Zbl

[20] H. Bothe, “Ein eindimensionals Kompactum in $E^3$, das sich nicht lagetrea in die Mengershe Universalkurve einbetten lässt”, Fundam. Math., 54:3 (1964), 251–258 | MR | Zbl

[21] T. B. Rushing, “Taming codimension three embeddings”, Bull. Amer. Math. Soc., 75:4 (1969), 815–820 | DOI | MR | Zbl

[22] J. Bryant, Approximating embeddings of polyhedra in codimension three, Preprint | MR

[23] R. Connelly, Unknotting close embeddings of polyhendra in codimension greater then two, Preprint