The embedding of compacta in Euclidean space
Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 234-254

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently the fundamental importance of the $1-ULC$ property of the complementary space in describing a given embedding in $E^n$ has become clear. “Wild” embeddings in $E^n$ are characterized by the absence of the $1-ULC$ property. In this paper “tame” and “wild” embeddings in $E^n$ of arbitrary compacta in codimension at least 3 are defined. For this purpose the notion of the “dimension of embedding” of compacta in $E^n$ is introduced. The main theorem asserts that an embedding of a compactum in $E^n$, $n\geqslant6$, is “wild” if and only if the complementary space is not $1-ULC$. Bibliography: 23 titles.
@article{SM_1970_12_2_a5,
     author = {M. A. Shtan'ko},
     title = {The embedding of compacta in {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {234--254},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - The embedding of compacta in Euclidean space
JO  - Sbornik. Mathematics
PY  - 1970
SP  - 234
EP  - 254
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/
LA  - en
ID  - SM_1970_12_2_a5
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T The embedding of compacta in Euclidean space
%J Sbornik. Mathematics
%D 1970
%P 234-254
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/
%G en
%F SM_1970_12_2_a5
M. A. Shtan'ko. The embedding of compacta in Euclidean space. Sbornik. Mathematics, Tome 12 (1970) no. 2, pp. 234-254. http://geodesic.mathdoc.fr/item/SM_1970_12_2_a5/