A~characterization of the category of a~quasiprimitive class of universal algebras and its correspondences
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 65-74
Voir la notice de l'article provenant de la source Math-Net.Ru
If $\Omega$ is the class of all universal algebras with the system of operations $\Omega$, then all homomorphisms of $\Omega$-algebras form a category. In this article we find necessary and sufficient conditions under which an arbitrary category is isomorphic to a full subcategory of the category of $\Omega$-algebras closed with respect to direct products and subalgebras. We also find necessary and sufficient conditions under which a given category with involution is isomorphic to some full subcategory of the category of correspondences of $\Omega$-algebras.
Bibliography: 8 titles.
@article{SM_1970_11_1_a4,
author = {G. E. Rivlin},
title = {A~characterization of the category of a~quasiprimitive class of universal algebras and its correspondences},
journal = {Sbornik. Mathematics},
pages = {65--74},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a4/}
}
TY - JOUR AU - G. E. Rivlin TI - A~characterization of the category of a~quasiprimitive class of universal algebras and its correspondences JO - Sbornik. Mathematics PY - 1970 SP - 65 EP - 74 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_1_a4/ LA - en ID - SM_1970_11_1_a4 ER -
G. E. Rivlin. A~characterization of the category of a~quasiprimitive class of universal algebras and its correspondences. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 65-74. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a4/