Effective estimates from below of the norms of ideals of an imaginary quadratic field
Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 47-58
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K=Q(\sqrt{-\Delta})$ be an imaginary quadratic field with discriminant $-\Delta$, and with ideal class number $h(\Delta)$. It is proved that there exists an ideal class in which the norm of all the integral ideals is not less than $(\lg\Delta)^{-c}\sqrt\Delta$, where the constant $c=c(h)$ can be effectively computed for given $h$.
Bibliography: 9 titles.
@article{SM_1970_11_1_a2,
author = {E. A. Anfert'eva and N. G. Chudakov},
title = {Effective estimates from below of the norms of ideals of an imaginary quadratic field},
journal = {Sbornik. Mathematics},
pages = {47--58},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1970_11_1_a2/}
}
TY - JOUR AU - E. A. Anfert'eva AU - N. G. Chudakov TI - Effective estimates from below of the norms of ideals of an imaginary quadratic field JO - Sbornik. Mathematics PY - 1970 SP - 47 EP - 58 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1970_11_1_a2/ LA - en ID - SM_1970_11_1_a2 ER -
E. A. Anfert'eva; N. G. Chudakov. Effective estimates from below of the norms of ideals of an imaginary quadratic field. Sbornik. Mathematics, Tome 11 (1970) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/SM_1970_11_1_a2/