The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity
Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 53-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the equation \begin{equation} Ly\equiv\sum_{k=0}^\infty a_k y^{(k)}(z)=f(z) \end{equation} under the assumption that the characteristic function $a(z)=\sum_{k=0}^\infty a_kz^k$ is an entire function which does not grow faster than an exponential function of minimal type (that is, $a(z)\in[1,0]$). If $G$ is an arbitrary domain, we let $E(G)$ denote the set of all functions which are analytic in $G$, and we let $L(E(G))$ be the image of $E(G)$ under the operator $Ly$ acting from $E(G)$ into $E(G)$. We let $W(y)$ denote the complete Weierstrass domain of existence of an arbitrary analytic function $y(z)$. Theorem 1. If $G$ is a finite convex domain, then $L(E(G))= E(G)$. \smallskip Theorem 2. If $G$ is not a simply connected domain, then $L(E(G))$ is a proper subset of $E(G)$. \smallskip Theorem 3. Let the function $y(z)$ be analytic at $z_0\in W(f)$ and satisfy equation $(1)$ in a neighborhood of this point. Then: a) if $W(f)$ is simply connected, then $W(y)$ is simply connected; b) if $W(f)$ is convex, then $W(y)$ is convex. Assertion 3b) for the case where $f(z)$ is an entire function extends a theorem of Polya. We note an important qualitative difference between linear equations of finite and infinite order. Namely, under the assumptions of Theorem 3 for a finite problem we know that $W(y)=W(f)$, but for an infinite problem we can always find a solution $y_1(z)$ for which $W(y_1)$ is a proper subset of $W(f)$. The following theorem is specifically for equations of infinite order, and does not have a finite analog. Theorem 4. {\it If $G$ is a domain which is not convex and $a(z)$ is a transcendental entire function in the class $[1,0],$ then there exists an operator $L_1y=\sum_{k=0}^\infty b_ky^{(k)}(z)$ with characteristic function $a_1=a(e^{i\varphi_2}z),$ $\varphi_2\in[0,2\pi],$ such that $L_1(E(G))$ is a proper subset of $E(G)$}. We note here that if $a(z)$ is a polynomial and $G$ is a finite, simply connected domain, then $L(E(G))=E(G)$. In this work we shall find necessary and sufficient conditions for solvability of equation (1) in $E(G)$ for a given right-hand side $f(z)\in E(G)$. We establish a connection between solvability conditions and certain interpolation problems for exponential functions. We shall examine certain examples. Bibliography: 15 titles.
@article{SM_1969_9_1_a1,
     author = {Yu. F. Korobeinik},
     title = {The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity},
     journal = {Sbornik. Mathematics},
     pages = {53--71},
     year = {1969},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1969_9_1_a1/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity
JO  - Sbornik. Mathematics
PY  - 1969
SP  - 53
EP  - 71
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1969_9_1_a1/
LA  - en
ID  - SM_1969_9_1_a1
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity
%J Sbornik. Mathematics
%D 1969
%P 53-71
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1969_9_1_a1/
%G en
%F SM_1969_9_1_a1
Yu. F. Korobeinik. The existence of an analytic solution of an infinite order differential equation and the nature of its domain of analyticity. Sbornik. Mathematics, Tome 9 (1969) no. 1, pp. 53-71. http://geodesic.mathdoc.fr/item/SM_1969_9_1_a1/

[1] A. I. Markushevich, Teoriya analiticheskikh funktsii, Gostekhizdat, M., 1950

[2] Yu. F. Korobeinik, “O resheniyakh differentsialnogo uravneniya beskonechnogo poryadka, analiticheskikh v nekrugovykh oblastyakh”, Matem. sb., 71(113) (1966), 535–544 | MR | Zbl

[3] Yu. F. Korobeinik, “O preobrazovaniyakh analiticheskikh prostranstv s pomoschyu differentsialnykh operatorov beskonechnogo poryadka”, Uspekhi matem. nauk, XX:5(125) (1965), 208–213 | MR

[4] R. P. Boas, “Differential equations of infinite order”, J. Indian Math. Soc., 4:1 (1950), 15–20 | MR

[5] A. F. Leontev, “O predstavlenii proizvolnykh funktsii ryadami Dirikhle”, DAN SSSR, 164:1 (1966), 40–42 | MR

[6] G. Polya, “Eine Verallgemeinerung des Fabryschen Lückensatzes”, Nachr. Gesell. Wiss. Göttingen, 1927, 187–195 | Zbl

[7] V. P. Khavin, “Prostranstva analiticheskikh funktsii”, Itogi nauki, seriya matem. analiz, 1964, VINITI, M., 1966, 76–164

[8] M. G. Khaplanov, “Lineinye funktsionaly v prostranstve odnoznachnykh analiticheskikh funktsii”, Trudy seminara po funkts. analizu, no. 3, 4, Voronezhskii un-t, 1960, 115–121

[9] Zh. Dedonne, L. Shvarts, “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Matematika, 2:2 (1958), 77–108

[10] L. Biberbakh, Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[11] G. Valiron, “Sur les solutions des équations différentielles linéaires d'ordre infini et à coefficients constants”, Ann. Scient. Ecole Norm. Super., 46:1 (1929), 25–53 | MR | Zbl

[12] Yu. F. Korobeinik, “Ob oblasti opredeleniya analiticheskogo resheniya differentsialnogo uravneniya beskonechnogo poryadka”, Matem. sb., 64(106) (1964), 153–170 | MR | Zbl

[13] A. F. Leontev, Ryady polinomov Dirikhle i ikh obobscheniya, Trudy Matem. in-ta im. V. A. Steklova, XXXIX, 1951 | MR | Zbl

[14] N. Aronszajn, “Sur les décompositions des fonctions analytiques uniformes et sur leurs applications”, Acta Math., 65:1 (1935), 1–156 | DOI | MR | Zbl

[15] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956