An aspect of the turnpike property. Long time horizon behavior
Serdica Mathematical Journal, Tome 49 (2023) no. 1–3, pp. 127-154
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The turnpike phenomenon concerns the structure of the optimal control and the optimal state of dynamic optimal control problems for long time horizons. The focus is regularly placed on the study of the interior of the time interval. Classical turnpike results state how the solution of the dynamic optimal control problems approaches the solution of the corresponding static optimal control problem in the interior of the time interval.
In this paper we look at a new aspect of the turnpike phenomenon. We show that for problems without explicit terminal condition, for large time horizons in the last part of the time interval the optimal state approaches a certain limit trajectory that is independent of the terminal time exponentially fast. For large time horizons also the optimal state in the initial part of the time interval approaches exponentially fast a limit state.
Keywords:
turnpike property, linear-quadratic optimal control problem, linear systems, dynamic optimal control problem, 49N10, 90C31, 46N10
@article{SMJ2_2023_49_1_3_a7,
author = {Gugat, Martin and Sokolowski, Jan},
title = {An aspect of the turnpike property. {Long} time horizon behavior},
journal = {Serdica Mathematical Journal},
pages = {127--154},
publisher = {mathdoc},
volume = {49},
number = {1{\textendash}3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a7/}
}
TY - JOUR AU - Gugat, Martin AU - Sokolowski, Jan TI - An aspect of the turnpike property. Long time horizon behavior JO - Serdica Mathematical Journal PY - 2023 SP - 127 EP - 154 VL - 49 IS - 1–3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a7/ LA - en ID - SMJ2_2023_49_1_3_a7 ER -
Gugat, Martin; Sokolowski, Jan. An aspect of the turnpike property. Long time horizon behavior. Serdica Mathematical Journal, Tome 49 (2023) no. 1–3, pp. 127-154. http://geodesic.mathdoc.fr/item/SMJ2_2023_49_1_3_a7/