Topics on real and complex convexity
Serdica Mathematical Journal, Tome 48 (2022) no. 3, pp. 149-210
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We investigate the study of convex, strictly plurisubharmonic and the special class consisted of convex and strictly plurisubharmonic functions in convex domains of \(\mathbb{C}^n\), \(n\geq1\).Let \(h:\mathbb{C}^n\rightarrow\mathbb{C}\) be pluriharmonic. We prove that \(\{b\in\mathbb{C}\;/| h+b|\;\textrm{is a convex function on}\; \mathbb{C}^n \}=\emptyset\), or \(\{\alpha\}\), or \(\mathbb{C}\), where \(\alpha\in\mathbb{C}\).Now let \(\varphi_1, \varphi_2, \varphi_3:D\rightarrow\mathbb{C}\) be three holomorphic functions, \(D\) is a domain of \(\mathbb{C}^n\). Put \(u(z,w)=| w-\overline{\varphi_1}(z)|| w-\overline{\varphi_2}(z)|| w-\overline{\varphi_3}(z)|\), for \((z,w)\in D\times\mathbb{C}\). We prove that \(u\) is psh on \(D\times\mathbb{C}\) if and only if \((\varphi_1+\varphi_2+\varphi_3)\) and \((\varphi_1\varphi_2+\varphi_1\varphi_3+\varphi_2\varphi_3)\) are constant on \(D\), or \((\varphi_1+\varphi_2+\varphi_3)\) is non constant and \(\varphi_1=\varphi_2=\varphi_3\) on \(D\).
Keywords:
holomorphic, convex, plurisubharmonic functions, harmonic, holomorphic partial differential equation, complex structure, inequalities, strictly, maximum principle, 32A10, 32A60, 32U05, 32U15, 32W50
@article{SMJ2_2022_48_3_a1,
author = {Abidi, Jamel},
title = {Topics on real and complex convexity},
journal = {Serdica Mathematical Journal},
pages = {149--210},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_48_3_a1/}
}
Abidi, Jamel. Topics on real and complex convexity. Serdica Mathematical Journal, Tome 48 (2022) no. 3, pp. 149-210. http://geodesic.mathdoc.fr/item/SMJ2_2022_48_3_a1/