Topics on real and complex convexity
Serdica Mathematical Journal, Tome 48 (2022) no. 3, pp. 149-210.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We investigate the study of convex, strictly plurisubharmonic and the special class consisted of convex and strictly plurisubharmonic functions in convex domains of \(\mathbb{C}^n\), \(n\geq1\).Let \(h:\mathbb{C}^n\rightarrow\mathbb{C}\) be pluriharmonic. We prove that \(\{b\in\mathbb{C}\;/| h+b|\;\textrm{is a convex function on}\; \mathbb{C}^n \}=\emptyset\), or \(\{\alpha\}\), or \(\mathbb{C}\), where \(\alpha\in\mathbb{C}\).Now let \(\varphi_1, \varphi_2, \varphi_3:D\rightarrow\mathbb{C}\) be three holomorphic functions, \(D\) is a domain of \(\mathbb{C}^n\). Put \(u(z,w)=| w-\overline{\varphi_1}(z)|| w-\overline{\varphi_2}(z)|| w-\overline{\varphi_3}(z)|\), for \((z,w)\in D\times\mathbb{C}\). We prove that \(u\) is psh on \(D\times\mathbb{C}\) if and only if \((\varphi_1+\varphi_2+\varphi_3)\) and \((\varphi_1\varphi_2+\varphi_1\varphi_3+\varphi_2\varphi_3)\) are constant on \(D\), or \((\varphi_1+\varphi_2+\varphi_3)\) is non constant and \(\varphi_1=\varphi_2=\varphi_3\) on \(D\).
Keywords: holomorphic, convex, plurisubharmonic functions, harmonic, holomorphic partial differential equation, complex structure, inequalities, strictly, maximum principle, 32A10, 32A60, 32U05, 32U15, 32W50
@article{SMJ2_2022_48_3_a1,
     author = {Abidi, Jamel},
     title = {Topics on real and complex convexity},
     journal = {Serdica Mathematical Journal},
     pages = {149--210},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2022_48_3_a1/}
}
TY  - JOUR
AU  - Abidi, Jamel
TI  - Topics on real and complex convexity
JO  - Serdica Mathematical Journal
PY  - 2022
SP  - 149
EP  - 210
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2022_48_3_a1/
LA  - en
ID  - SMJ2_2022_48_3_a1
ER  - 
%0 Journal Article
%A Abidi, Jamel
%T Topics on real and complex convexity
%J Serdica Mathematical Journal
%D 2022
%P 149-210
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2022_48_3_a1/
%G en
%F SMJ2_2022_48_3_a1
Abidi, Jamel. Topics on real and complex convexity. Serdica Mathematical Journal, Tome 48 (2022) no. 3, pp. 149-210. http://geodesic.mathdoc.fr/item/SMJ2_2022_48_3_a1/