Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric
Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 151-164
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
A Lorentz surface in the pseudo-Euclidean 4-space with neutral metric is called quasi-minimal if its mean curvature vector is lightlike at each point. We prove that any quasi-minimal Lorentz surface whose Gauss curvature \(K\) and normal curvature \(\varkappa\) satisfy the condition \(K^2 - \varkappa^2 \neq 0\) at every point is determined (up to a rigid motion) by five geometric functions satisfying a system of four partial differential equations.
Keywords:
quasi-minimal surface, marginally trapped surface, pseudo-Euclidean 4-space, Fundamental theorem, 53B30, 53A35, 53B25
@article{SMJ2_2020_46_2_a4,
author = {Milousheva, Velichka and Aleksieva, Yana},
title = {Quasi-minimal {Lorentz} surfaces in pseudo-euclidean 4-space with neutral metric},
journal = {Serdica Mathematical Journal},
pages = {151--164},
publisher = {mathdoc},
volume = {46},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/}
}
TY - JOUR AU - Milousheva, Velichka AU - Aleksieva, Yana TI - Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric JO - Serdica Mathematical Journal PY - 2020 SP - 151 EP - 164 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/ LA - en ID - SMJ2_2020_46_2_a4 ER -
Milousheva, Velichka; Aleksieva, Yana. Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric. Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 151-164. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/