Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric
Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 151-164.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A Lorentz surface in the pseudo-Euclidean 4-space with neutral metric is called quasi-minimal if its mean curvature vector is lightlike at each point. We prove that any quasi-minimal Lorentz surface whose Gauss curvature \(K\) and normal curvature \(\varkappa\) satisfy the condition \(K^2 - \varkappa^2 \neq 0\) at every point is determined (up to a rigid motion) by five geometric functions satisfying a system of four partial differential equations.
Keywords: quasi-minimal surface, marginally trapped surface, pseudo-Euclidean 4-space, Fundamental theorem, 53B30, 53A35, 53B25
@article{SMJ2_2020_46_2_a4,
     author = {Milousheva, Velichka and Aleksieva, Yana},
     title = {Quasi-minimal {Lorentz} surfaces in pseudo-euclidean 4-space with neutral metric},
     journal = {Serdica Mathematical Journal},
     pages = {151--164},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/}
}
TY  - JOUR
AU  - Milousheva, Velichka
AU  - Aleksieva, Yana
TI  - Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric
JO  - Serdica Mathematical Journal
PY  - 2020
SP  - 151
EP  - 164
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/
LA  - en
ID  - SMJ2_2020_46_2_a4
ER  - 
%0 Journal Article
%A Milousheva, Velichka
%A Aleksieva, Yana
%T Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric
%J Serdica Mathematical Journal
%D 2020
%P 151-164
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/
%G en
%F SMJ2_2020_46_2_a4
Milousheva, Velichka; Aleksieva, Yana. Quasi-minimal Lorentz surfaces in pseudo-euclidean 4-space with neutral metric. Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 151-164. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a4/