Modulo q greatest common divisor algorithms
Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 121-134.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we are looking for fast gcd algorithms in certain quadratic number fields. These algorithms do not belong to the Euclidean algorithm family rather the proposed algorithms can be viewed as generalization of the binary gcd algorithm.
Keywords: binary gcd algorithm, extended gcd algorithm, 11A05, 11Y16
@article{SMJ2_2020_46_2_a2,
     author = {Szab\'o, S\'andor},
     title = {Modulo q greatest common divisor algorithms},
     journal = {Serdica Mathematical Journal},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a2/}
}
TY  - JOUR
AU  - Szabó, Sándor
TI  - Modulo q greatest common divisor algorithms
JO  - Serdica Mathematical Journal
PY  - 2020
SP  - 121
EP  - 134
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a2/
LA  - en
ID  - SMJ2_2020_46_2_a2
ER  - 
%0 Journal Article
%A Szabó, Sándor
%T Modulo q greatest common divisor algorithms
%J Serdica Mathematical Journal
%D 2020
%P 121-134
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a2/
%G en
%F SMJ2_2020_46_2_a2
Szabó, Sándor. Modulo q greatest common divisor algorithms. Serdica Mathematical Journal, Tome 46 (2020) no. 2, pp. 121-134. http://geodesic.mathdoc.fr/item/SMJ2_2020_46_2_a2/