Varieties of bicommutative algebras
Serdica Mathematical Journal, Tome 45 (2019) no. 2, pp. 167-188.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Bicommutative algebras are nonassociative algebras satisfying the polynomial identities of right- and left-commutativity (x1x2)x3 = (x1x3)x2 and x1(x2x3) = x2(x1x3). Let B be the variety of all bicommutative algebras over a field K of characteristic 0 and let F (B) be the free algebra of countable rank in B. We prove that if D is a subvariety of B satisfying a polynomial identity f = 0 of degree k, where 0 ≠ f ∈ F(B), then the codimension sequence c¬n(D), n = 1, 2, . . ., is bounded by a polynomial in n of degree k − 1. Since cn(B) = 2n − 2 for n ≥ 2, and exp(B) = 2, this gives that exp(D) ≤ 1, i.e., B is minimal with respect to the codimension growth. When the field K is algebraically closed there are only three pairwise nonisomorphic two-dimensional bicommutative algebras A which arenonassociative. They are one-generated and with the property dim A2 = 1. We present bases of their polynomial identities and show that one of these algebras generates the whole variety B.
Keywords: Free bicommutative algebras, varieties of bicommutative algebras, codimension sequence, codimension growth, two-dimensional algebras, 17A30, 17A50, 20C30.
@article{SMJ2_2019_45_2_a4,
     author = {Drensky Vesselin},
     title = {Varieties of bicommutative algebras},
     journal = {Serdica Mathematical Journal},
     pages = {167--188},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2019_45_2_a4/}
}
TY  - JOUR
AU  - Drensky Vesselin
TI  - Varieties of bicommutative algebras
JO  - Serdica Mathematical Journal
PY  - 2019
SP  - 167
EP  - 188
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2019_45_2_a4/
LA  - en
ID  - SMJ2_2019_45_2_a4
ER  - 
%0 Journal Article
%A Drensky Vesselin
%T Varieties of bicommutative algebras
%J Serdica Mathematical Journal
%D 2019
%P 167-188
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2019_45_2_a4/
%G en
%F SMJ2_2019_45_2_a4
Drensky Vesselin. Varieties of bicommutative algebras. Serdica Mathematical Journal, Tome 45 (2019) no. 2, pp. 167-188. http://geodesic.mathdoc.fr/item/SMJ2_2019_45_2_a4/