On the Gibson Bounds over Finite Fields
Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 395-416.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We investigate the Pólya problem on the sign conversion between the permanent and the determinant over finite fields. The main attention is given to the sufficient conditions which guarantee non-existence of sing-conversion. In addition we show that F3 is the only field with the property that any matrix with the entries from the field is convertible. As a result we obtain that over finite fields there are no analogs of the upper Gibson barrier for the conversion and establish the lower convertibility barrier.
Keywords: Permanent, Determinant, Finite Fields, Pólya Problem
@article{SMJ2_2012_38_1-3_a17,
     author = {V. Budrevich, Mikhail and E. Guterman, Alexander},
     title = {On the {Gibson} {Bounds} over {Finite} {Fields}},
     journal = {Serdica Mathematical Journal},
     pages = {395--416},
     publisher = {mathdoc},
     volume = {38},
     number = {1-3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a17/}
}
TY  - JOUR
AU  - V. Budrevich, Mikhail
AU  - E. Guterman, Alexander
TI  - On the Gibson Bounds over Finite Fields
JO  - Serdica Mathematical Journal
PY  - 2012
SP  - 395
EP  - 416
VL  - 38
IS  - 1-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a17/
LA  - en
ID  - SMJ2_2012_38_1-3_a17
ER  - 
%0 Journal Article
%A V. Budrevich, Mikhail
%A E. Guterman, Alexander
%T On the Gibson Bounds over Finite Fields
%J Serdica Mathematical Journal
%D 2012
%P 395-416
%V 38
%N 1-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a17/
%G en
%F SMJ2_2012_38_1-3_a17
V. Budrevich, Mikhail; E. Guterman, Alexander. On the Gibson Bounds over Finite Fields. Serdica Mathematical Journal, Tome 38 (2012) no. 1-3, pp. 395-416. http://geodesic.mathdoc.fr/item/SMJ2_2012_38_1-3_a17/