The Lindelöf number greater than continuum is u-invariant
Serdica Mathematical Journal, Tome 37 (2011) no. 2, pp. 143-162.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Two Tychonoff spaces X and Y are said to be l-equivalent (u-equivalent) if Cp(X) and Cp(Y) are linearly (uniformly) homeomorphic. N. V. Velichko proved that countable Lindelöf number is preserved by the relation of l-equivalence. A. Bouziad strengthened this result and proved that any Lindelöf number is preserved by the relation of l-equivalence. In this paper it has been proved that the Lindelöf number greater than continuum is preserved by the relation of u-equivalence.
Keywords: Function Spaces, u-equivalence, u-invariant, Lindelöf Number, Set-Valued Mappings
@article{SMJ2_2011_37_2_a3,
     author = {Arbit, A. V.},
     title = {The {Lindel\"of} number greater than continuum is u-invariant},
     journal = {Serdica Mathematical Journal},
     pages = {143--162},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2011_37_2_a3/}
}
TY  - JOUR
AU  - Arbit, A. V.
TI  - The Lindelöf number greater than continuum is u-invariant
JO  - Serdica Mathematical Journal
PY  - 2011
SP  - 143
EP  - 162
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2011_37_2_a3/
LA  - en
ID  - SMJ2_2011_37_2_a3
ER  - 
%0 Journal Article
%A Arbit, A. V.
%T The Lindelöf number greater than continuum is u-invariant
%J Serdica Mathematical Journal
%D 2011
%P 143-162
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2011_37_2_a3/
%G en
%F SMJ2_2011_37_2_a3
Arbit, A. V. The Lindelöf number greater than continuum is u-invariant. Serdica Mathematical Journal, Tome 37 (2011) no. 2, pp. 143-162. http://geodesic.mathdoc.fr/item/SMJ2_2011_37_2_a3/