Class Number Two for Real Quadratic Fields of Richaud-Degert Type
Serdica Mathematical Journal, Tome 35 (2009) no. 3, pp. 287-300.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

This paper contains proofs of conjectures made in [16] on class number 2 and what this author has dubbed the Euler-Rabinowitsch polynomial for real quadratic fields. As well, we complete the list of Richaud-Degert types given in [16] and show how the behaviour of the Euler-Rabinowitsch polynomials and certain continued fraction expansions come into play in the complete determination of the class number 2 problem for such types. For some values the determination is unconditional, and for others, the wide Richaud-Degert types, the determination is conditional on the generalized Riemann hypothesis (GRH).
Keywords: Quadratic Fields, Prime-Producing Polynomials, Class Numbers, Continued Fractions, Cycles of Ideals, Richaud-Degert Types
@article{SMJ2_2009_35_3_a3,
     author = {Mollin, R. A.},
     title = {Class {Number} {Two} for {Real} {Quadratic} {Fields} of {Richaud-Degert} {Type}},
     journal = {Serdica Mathematical Journal},
     pages = {287--300},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a3/}
}
TY  - JOUR
AU  - Mollin, R. A.
TI  - Class Number Two for Real Quadratic Fields of Richaud-Degert Type
JO  - Serdica Mathematical Journal
PY  - 2009
SP  - 287
EP  - 300
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a3/
LA  - en
ID  - SMJ2_2009_35_3_a3
ER  - 
%0 Journal Article
%A Mollin, R. A.
%T Class Number Two for Real Quadratic Fields of Richaud-Degert Type
%J Serdica Mathematical Journal
%D 2009
%P 287-300
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a3/
%G en
%F SMJ2_2009_35_3_a3
Mollin, R. A. Class Number Two for Real Quadratic Fields of Richaud-Degert Type. Serdica Mathematical Journal, Tome 35 (2009) no. 3, pp. 287-300. http://geodesic.mathdoc.fr/item/SMJ2_2009_35_3_a3/