New Upper Bound for the Edge Folkman Number Fe(3,5;13)
Serdica Mathematical Journal, Tome 34 (2008) no. 4, pp. 783-790.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

For a given graph G let V(G) and E(G) denote the vertex and the edge set of G respevtively. The symbol G e → (a1, …, ar) means that in every r-coloring of E(G) there exists a monochromatic ai-clique of color i for some i ∈ {1,…,r}. The edge Folkman numbers are defined by the equality Fe(a1, …, ar; q) = min{|V(G)| : G e → (a1, …, ar; q) and cl(G) q}. In this paper we prove a new upper bound on the edge Folkman number Fe(3,5;13), namely Fe(3,5;13) ≤ 21. This improves the bound Fe(3,5;13) ≤ 24, proved by Kolev and Nenov.
Keywords: Folkman Graph, Folkman Number
@article{SMJ2_2008_34_4_a5,
     author = {Kolev, Nikolay},
     title = {New {Upper} {Bound} for the {Edge} {Folkman} {Number} {Fe(3,5;13)}},
     journal = {Serdica Mathematical Journal},
     pages = {783--790},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_4_a5/}
}
TY  - JOUR
AU  - Kolev, Nikolay
TI  - New Upper Bound for the Edge Folkman Number Fe(3,5;13)
JO  - Serdica Mathematical Journal
PY  - 2008
SP  - 783
EP  - 790
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2008_34_4_a5/
LA  - en
ID  - SMJ2_2008_34_4_a5
ER  - 
%0 Journal Article
%A Kolev, Nikolay
%T New Upper Bound for the Edge Folkman Number Fe(3,5;13)
%J Serdica Mathematical Journal
%D 2008
%P 783-790
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2008_34_4_a5/
%G en
%F SMJ2_2008_34_4_a5
Kolev, Nikolay. New Upper Bound for the Edge Folkman Number Fe(3,5;13). Serdica Mathematical Journal, Tome 34 (2008) no. 4, pp. 783-790. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_4_a5/