New Upper Bound for the Edge Folkman Number Fe(3,5;13)
Serdica Mathematical Journal, Tome 34 (2008) no. 4, pp. 783-790
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
For a given graph G let V(G) and E(G) denote the vertex and the edge set of G respevtively.
The symbol G e → (a1, …, ar)
means that in every r-coloring of E(G) there exists a monochromatic ai-clique of color i
for some i ∈ {1,…,r}. The edge Folkman numbers are defined by the equality
Fe(a1, …, ar; q) = min{|V(G)| : G e → (a1, …, ar; q) and cl(G) q}.
In this paper we prove a new upper bound on the edge Folkman number Fe(3,5;13), namely
Fe(3,5;13) ≤ 21. This improves the bound Fe(3,5;13) ≤ 24, proved by Kolev and Nenov.
Keywords:
Folkman Graph, Folkman Number
@article{SMJ2_2008_34_4_a5,
author = {Kolev, Nikolay},
title = {New {Upper} {Bound} for the {Edge} {Folkman} {Number} {Fe(3,5;13)}},
journal = {Serdica Mathematical Journal},
pages = {783--790},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2008_34_4_a5/}
}
Kolev, Nikolay. New Upper Bound for the Edge Folkman Number Fe(3,5;13). Serdica Mathematical Journal, Tome 34 (2008) no. 4, pp. 783-790. http://geodesic.mathdoc.fr/item/SMJ2_2008_34_4_a5/