Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring
Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 269-276.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

For an n×n matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients: (λ0I+C0)+A(λ1I+C1)+… +An-1(λn-1I+Cn-1)+An (n!I+Cn) = 0, where λ0+λ1x+…+λn-1 xn-1+n!xn is the right characteristic polynomial of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci, 0 ≤ i ≤ n are in [R,R]. If R is commutative, then C0 = C1 = … = Cn-1 = Cn = 0 and our identity gives the n! times scalar multiple of the classical Cayley-Hamilton identity for A.
Keywords: Commutator Subgroup [R,R] of a Ring R
@article{SMJ2_2006_32_2-3_a8,
     author = {Szigeti, Jeno},
     title = {Cayley-Hamilton {Theorem} for {Matrices} over an {Arbitrary} {Ring}},
     journal = {Serdica Mathematical Journal},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {32},
     number = {2-3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a8/}
}
TY  - JOUR
AU  - Szigeti, Jeno
TI  - Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 269
EP  - 276
VL  - 32
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a8/
LA  - en
ID  - SMJ2_2006_32_2-3_a8
ER  - 
%0 Journal Article
%A Szigeti, Jeno
%T Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring
%J Serdica Mathematical Journal
%D 2006
%P 269-276
%V 32
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a8/
%G en
%F SMJ2_2006_32_2-3_a8
Szigeti, Jeno. Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring. Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 269-276. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a8/