Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring
Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 269-276
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
For an n×n matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients:
(λ0I+C0)+A(λ1I+C1)+… +An-1(λn-1I+Cn-1)+An (n!I+Cn) = 0,
where λ0+λ1x+…+λn-1 xn-1+n!xn is the right characteristic polynomial of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci, 0 ≤ i ≤ n are in [R,R]. If R is commutative, then C0 = C1 = … = Cn-1 = Cn = 0 and our identity gives the n! times scalar multiple of the classical Cayley-Hamilton identity for A.
Keywords:
Commutator Subgroup [R,R] of a Ring R
@article{SMJ2_2006_32_2-3_a8,
author = {Szigeti, Jeno},
title = {Cayley-Hamilton {Theorem} for {Matrices} over an {Arbitrary} {Ring}},
journal = {Serdica Mathematical Journal},
pages = {269--276},
year = {2006},
volume = {32},
number = {2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a8/}
}
Szigeti, Jeno. Cayley-Hamilton Theorem for Matrices over an Arbitrary Ring. Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 269-276. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a8/