Finite Groups as the Union of Proper Subgroups
Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 259-268.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

As is known, if a finite solvable group G is an n-sum group then n − 1 is a prime power. It is an interesting problem in group theory to study for which numbers n with n-1 > 1 and not a prime power there exists a finite n-sum group. In this paper we mainly study finite nonsolvable n-sum groups and show that 15 is the first such number. More precisely, we prove that there exist no finite 11-sum or 13-sum groups and there is indeed a finite 15-sum group. Results by J. H. E. Cohn and M. J. Tomkinson are thus extended and further generalizations are possible.
Keywords: Finite Group, Simple Group, Covering Number
@article{SMJ2_2006_32_2-3_a7,
     author = {Zhang, Jiping},
     title = {Finite {Groups} as the {Union} of {Proper} {Subgroups}},
     journal = {Serdica Mathematical Journal},
     pages = {259--268},
     publisher = {mathdoc},
     volume = {32},
     number = {2-3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a7/}
}
TY  - JOUR
AU  - Zhang, Jiping
TI  - Finite Groups as the Union of Proper Subgroups
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 259
EP  - 268
VL  - 32
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a7/
LA  - en
ID  - SMJ2_2006_32_2-3_a7
ER  - 
%0 Journal Article
%A Zhang, Jiping
%T Finite Groups as the Union of Proper Subgroups
%J Serdica Mathematical Journal
%D 2006
%P 259-268
%V 32
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a7/
%G en
%F SMJ2_2006_32_2-3_a7
Zhang, Jiping. Finite Groups as the Union of Proper Subgroups. Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 259-268. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a7/