On the Residuum of Concave Univalent Functions
Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 209-214.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let D denote the open unit disc and f:D→[`C] be meromorphic and injective in D. We further assume that f has a simple pole at the point p О (0,1) and is normalized by f(0) = 0 and f′(0) = 1. In particular, we are concerned with f that map D onto a domain whose complement with respect to [`C] is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). We determine for fixed p ∈ (0,1) the set of variability of the residuum of f, f ∈ Co(p).
Keywords: Concave Univalent Functions, Domain of Variability, Residuum
@article{SMJ2_2006_32_2-3_a4,
     author = {Wirths, K.-J.},
     title = {On the {Residuum} of {Concave} {Univalent} {Functions}},
     journal = {Serdica Mathematical Journal},
     pages = {209--214},
     publisher = {mathdoc},
     volume = {32},
     number = {2-3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a4/}
}
TY  - JOUR
AU  - Wirths, K.-J.
TI  - On the Residuum of Concave Univalent Functions
JO  - Serdica Mathematical Journal
PY  - 2006
SP  - 209
EP  - 214
VL  - 32
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a4/
LA  - en
ID  - SMJ2_2006_32_2-3_a4
ER  - 
%0 Journal Article
%A Wirths, K.-J.
%T On the Residuum of Concave Univalent Functions
%J Serdica Mathematical Journal
%D 2006
%P 209-214
%V 32
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a4/
%G en
%F SMJ2_2006_32_2-3_a4
Wirths, K.-J. On the Residuum of Concave Univalent Functions. Serdica Mathematical Journal, Tome 32 (2006) no. 2-3, pp. 209-214. http://geodesic.mathdoc.fr/item/SMJ2_2006_32_2-3_a4/