Complex Hyperbolic Surfaces of Abelian Type
Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 207-238.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We call a complex (quasiprojective) surface of hyperbolic type, iff – after removing finitely many points and/or curves – the universal cover is the complex two-dimensional unit ball. We characterize abelian surfaces which have a birational transform of hyperbolic type by the existence of a reduced divisor with only elliptic curve components and maximal singularity rate (equal to 4). We discover a Picard modular surface of Gauß numbers of bielliptic type connected with the rational cuboid problem. This paper is also necessary to understand new constructions of Picard modular forms of 3-divisible weights by special abelian theta functions.
Keywords: Algebraic Curve, Elliptic Curve, Algebraic Surface, Shimura Variety, Arithmetic Group, Picard Modular Group, Gauß Numbers, Congruence Numbers, Negative Constant Curvature, Unit Ball, Kähler-Einstein Metrics
@article{SMJ2_2004_30_2-3_a6,
     author = {Holzapfel, R.},
     title = {Complex {Hyperbolic} {Surfaces} of {Abelian} {Type}},
     journal = {Serdica Mathematical Journal},
     pages = {207--238},
     publisher = {mathdoc},
     volume = {30},
     number = {2-3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a6/}
}
TY  - JOUR
AU  - Holzapfel, R.
TI  - Complex Hyperbolic Surfaces of Abelian Type
JO  - Serdica Mathematical Journal
PY  - 2004
SP  - 207
EP  - 238
VL  - 30
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a6/
LA  - en
ID  - SMJ2_2004_30_2-3_a6
ER  - 
%0 Journal Article
%A Holzapfel, R.
%T Complex Hyperbolic Surfaces of Abelian Type
%J Serdica Mathematical Journal
%D 2004
%P 207-238
%V 30
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a6/
%G en
%F SMJ2_2004_30_2-3_a6
Holzapfel, R. Complex Hyperbolic Surfaces of Abelian Type. Serdica Mathematical Journal, Tome 30 (2004) no. 2-3, pp. 207-238. http://geodesic.mathdoc.fr/item/SMJ2_2004_30_2-3_a6/