A Basis for Z-Graded Identities of Matrices over Infinite Fields
Serdica Mathematical Journal, Tome 29 (2003) no. 2, pp. 149-158.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The algebra Mn(K) of the matrices n × n over a field K can be regarded as a Z-graded algebra. In this paper, it is proved that if K is an infinite field, all the Z-graded polynomial identities of Mn(K) follow from the identities: x = 0, |α(x)| ≥ n, xy = yx, α(x) = α(y) = 0, xyz = zyx, α(x) = −α(y) = α(z ), where α is the degree of the corresponding variable. This is a generalization of a result of Vasilovsky about the Z-graded identities of the algebra Mn(K) over fields of characteristic 0.
Keywords: Matrix Algebra, Variety of Algebras, Polynomial Identities, Graded Identities
@article{SMJ2_2003_29_2_a3,
     author = {Azevedo, Sergio},
     title = {A {Basis} for {Z-Graded} {Identities} of {Matrices} over {Infinite} {Fields}},
     journal = {Serdica Mathematical Journal},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_2_a3/}
}
TY  - JOUR
AU  - Azevedo, Sergio
TI  - A Basis for Z-Graded Identities of Matrices over Infinite Fields
JO  - Serdica Mathematical Journal
PY  - 2003
SP  - 149
EP  - 158
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2003_29_2_a3/
LA  - en
ID  - SMJ2_2003_29_2_a3
ER  - 
%0 Journal Article
%A Azevedo, Sergio
%T A Basis for Z-Graded Identities of Matrices over Infinite Fields
%J Serdica Mathematical Journal
%D 2003
%P 149-158
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2003_29_2_a3/
%G en
%F SMJ2_2003_29_2_a3
Azevedo, Sergio. A Basis for Z-Graded Identities of Matrices over Infinite Fields. Serdica Mathematical Journal, Tome 29 (2003) no. 2, pp. 149-158. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_2_a3/