Adequate Compacta which are Gul’ko or Talagrand
Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 55-64.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We answer positively a question raised by S. Argyros: Given any coanalytic, nonalytic subset Σ′ of the irrationals, we construct, in Mercourakis space c1(Σ′), an adequate compact which is Gul’ko and not Talagrand. Further, given any Borel, non Fσ subset Σ′ of the irrationals, we construct, in c1(Σ′), an adequate compact which is Talagrand and not Eberlein.
Keywords: Talagrand Compact, Gul’ko Compact, K−Analytic Space, K−Countably Determined Space, Analytic Set, Coanalytic Set, Adequate Family, ill-Founded Tree, Well-Founded Tree, Mercourakis Space
@article{SMJ2_2003_29_1_a4,
     author = {\v{C}{\'\i}\v{z}ek, Petr and Fabian, Mari\'an},
     title = {Adequate {Compacta} which are {Gul{\textquoteright}ko} or {Talagrand}},
     journal = {Serdica Mathematical Journal},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a4/}
}
TY  - JOUR
AU  - Čížek, Petr
AU  - Fabian, Marián
TI  - Adequate Compacta which are Gul’ko or Talagrand
JO  - Serdica Mathematical Journal
PY  - 2003
SP  - 55
EP  - 64
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a4/
LA  - en
ID  - SMJ2_2003_29_1_a4
ER  - 
%0 Journal Article
%A Čížek, Petr
%A Fabian, Marián
%T Adequate Compacta which are Gul’ko or Talagrand
%J Serdica Mathematical Journal
%D 2003
%P 55-64
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a4/
%G en
%F SMJ2_2003_29_1_a4
Čížek, Petr; Fabian, Marián. Adequate Compacta which are Gul’ko or Talagrand. Serdica Mathematical Journal, Tome 29 (2003) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/SMJ2_2003_29_1_a4/