Nearly Coconvex Approximation
Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 361-378.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let f ∈ C[−1, 1] change its convexity finitely many times, in the interval. We are interested in estimating the degree of approximation of f by polynomials, and by piecewise polynomials, which are nearly coconvex with it, namely, polynomials and piecewise polynomials that preserve the convexity of f except perhaps in some small neighborhoods of the points where f changes its convexity. We obtain Jackson type estimates and summarize the positive and negative results in a truth-table as we have previously done for nearly comonotone approximation.
Keywords: Nearly Coconvex Approximation, Polynomial Approximation, Piecewise Polynomial Approximation, Jackson Estimates
@article{SMJ2_2002_28_4_a6,
     author = {Leviatan, D. and Shevchuk, I.},
     title = {Nearly {Coconvex} {Approximation}},
     journal = {Serdica Mathematical Journal},
     pages = {361--378},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a6/}
}
TY  - JOUR
AU  - Leviatan, D.
AU  - Shevchuk, I.
TI  - Nearly Coconvex Approximation
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 361
EP  - 378
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a6/
LA  - en
ID  - SMJ2_2002_28_4_a6
ER  - 
%0 Journal Article
%A Leviatan, D.
%A Shevchuk, I.
%T Nearly Coconvex Approximation
%J Serdica Mathematical Journal
%D 2002
%P 361-378
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a6/
%G en
%F SMJ2_2002_28_4_a6
Leviatan, D.; Shevchuk, I. Nearly Coconvex Approximation. Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 361-378. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a6/