Generalization of a Conjecture in the Geometry of Polynomials
Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 283-304.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we survey work on and around the following conjecture, which was first stated about 45 years ago: If all the zeros of an algebraic polynomial p (of degree n ≥ 2) lie in a disk with radius r, then, for each zero z1 of p, the disk with center z1 and radius r contains at least one zero of the derivative p′ . Until now, this conjecture has been proved for n ≤ 8 only. We also put the conjecture in a more general framework involving higher order derivatives and sets defined by the zeros of the polynomials.
Keywords: Geometry of Polynomials, Gauss-Lucas Theorem, Zeros of Polynomials, Critical Points, Ilieff-Sendov Conjecture
@article{SMJ2_2002_28_4_a2,
     author = {Sendov, Bl.},
     title = {Generalization of a {Conjecture} in the {Geometry} of {Polynomials}},
     journal = {Serdica Mathematical Journal},
     pages = {283--304},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a2/}
}
TY  - JOUR
AU  - Sendov, Bl.
TI  - Generalization of a Conjecture in the Geometry of Polynomials
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 283
EP  - 304
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a2/
LA  - en
ID  - SMJ2_2002_28_4_a2
ER  - 
%0 Journal Article
%A Sendov, Bl.
%T Generalization of a Conjecture in the Geometry of Polynomials
%J Serdica Mathematical Journal
%D 2002
%P 283-304
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a2/
%G en
%F SMJ2_2002_28_4_a2
Sendov, Bl. Generalization of a Conjecture in the Geometry of Polynomials. Serdica Mathematical Journal, Tome 28 (2002) no. 4, pp. 283-304. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_4_a2/