On a Class of Vertex Folkman Numbers
Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 219-232
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and
p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means
that in every r-coloring of the vertices of G there exists a monochromatic
ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the
vertex Folkman numbers
F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G}
We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem
3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).
Keywords:
Vertex Folkman Graph, Vertex Folkman Number
@article{SMJ2_2002_28_3_a3,
author = {Nenov, Nedyalko},
title = {On a {Class} of {Vertex} {Folkman} {Numbers}},
journal = {Serdica Mathematical Journal},
pages = {219--232},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a3/}
}
Nenov, Nedyalko. On a Class of Vertex Folkman Numbers. Serdica Mathematical Journal, Tome 28 (2002) no. 3, pp. 219-232. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_3_a3/