Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0
Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 175-188
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
This article provides necessary and sufficient conditions for
both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2
to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect
square. This is given in terms of the ideal theory of the underlying real
quadratic order Z[√D].
Keywords:
Continued Fractions, Diophantine Equations, Fundamental Units, Simultaneous Solutions, Ideals, Norm Form Equations
@article{SMJ2_2002_28_2_a5,
author = {Mollin, R.},
title = {Ideal {Criteria} for both {Ideal} {Criteria} for both {X2-dy2} = {M1} {And} {X2-dy2} = {M2} to have {Primitive} {Solutions} for any {Integers} {M1,} {M2} {Prime} to {D} > 0},
journal = {Serdica Mathematical Journal},
pages = {175--188},
year = {2002},
volume = {28},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/}
}
TY - JOUR AU - Mollin, R. TI - Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0 JO - Serdica Mathematical Journal PY - 2002 SP - 175 EP - 188 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/ LA - en ID - SMJ2_2002_28_2_a5 ER -
%0 Journal Article %A Mollin, R. %T Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0 %J Serdica Mathematical Journal %D 2002 %P 175-188 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/ %G en %F SMJ2_2002_28_2_a5
Mollin, R. Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0. Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 175-188. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/