Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
@article{SMJ2_2002_28_2_a5, author = {Mollin, R.}, title = {Ideal {Criteria} for both {Ideal} {Criteria} for both {X2-dy2} = {M1} {And} {X2-dy2} = {M2} to have {Primitive} {Solutions} for any {Integers} {M1,} {M2} {Prime} to {D} > 0}, journal = {Serdica Mathematical Journal}, pages = {175--188}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/} }
TY - JOUR AU - Mollin, R. TI - Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0 JO - Serdica Mathematical Journal PY - 2002 SP - 175 EP - 188 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/ LA - en ID - SMJ2_2002_28_2_a5 ER -
%0 Journal Article %A Mollin, R. %T Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0 %J Serdica Mathematical Journal %D 2002 %P 175-188 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/ %G en %F SMJ2_2002_28_2_a5
Mollin, R. Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0. Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 175-188. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/