Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0
Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 175-188.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

This article provides necessary and sufficient conditions for both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2 to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect square. This is given in terms of the ideal theory of the underlying real quadratic order Z[√D].
Keywords: Continued Fractions, Diophantine Equations, Fundamental Units, Simultaneous Solutions, Ideals, Norm Form Equations
@article{SMJ2_2002_28_2_a5,
     author = {Mollin, R.},
     title = {Ideal {Criteria} for both {Ideal} {Criteria} for both {X2-dy2} = {M1} {And} {X2-dy2} = {M2} to have {Primitive} {Solutions} for any {Integers} {M1,} {M2} {Prime} to {D} > 0},
     journal = {Serdica Mathematical Journal},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/}
}
TY  - JOUR
AU  - Mollin, R.
TI  - Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0
JO  - Serdica Mathematical Journal
PY  - 2002
SP  - 175
EP  - 188
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/
LA  - en
ID  - SMJ2_2002_28_2_a5
ER  - 
%0 Journal Article
%A Mollin, R.
%T Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0
%J Serdica Mathematical Journal
%D 2002
%P 175-188
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/
%G en
%F SMJ2_2002_28_2_a5
Mollin, R. Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0. Serdica Mathematical Journal, Tome 28 (2002) no. 2, pp. 175-188. http://geodesic.mathdoc.fr/item/SMJ2_2002_28_2_a5/