Asplund Functions and Projectional Resolutions of the Identity
Serdica Mathematical Journal, Tome 26 (2000) no. 4, pp. 287-308.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We further develop the theory of the so called Asplund functions, recently introduced and studied by W. K. Tang. Let f be an Asplund function on a Banach space X. We prove that (i) the subspace Y := sp ∂f(X) has a projectional resolution of the identity, and that (ii) if X is weakly Lindel¨of determined, then X admits a projectional resolution of the identity such that the adjoint projections restricted to Y form a projectional resolution of the identity on Y , and the dual X* admits an equivalent dual norm such that its restriction to Y is locally uniformly rotund.
Keywords: Asplund Function, Asplund Space, Weakly LindelÖf Determined Space, Projectional Resolution Of The Identity, Locally Uniformly Rotund Norm
@article{SMJ2_2000_26_4_a1,
     author = {Zemek, Martin},
     title = {Asplund {Functions} and {Projectional} {Resolutions} of the {Identity}},
     journal = {Serdica Mathematical Journal},
     pages = {287--308},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a1/}
}
TY  - JOUR
AU  - Zemek, Martin
TI  - Asplund Functions and Projectional Resolutions of the Identity
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 287
EP  - 308
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a1/
LA  - en
ID  - SMJ2_2000_26_4_a1
ER  - 
%0 Journal Article
%A Zemek, Martin
%T Asplund Functions and Projectional Resolutions of the Identity
%J Serdica Mathematical Journal
%D 2000
%P 287-308
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a1/
%G en
%F SMJ2_2000_26_4_a1
Zemek, Martin. Asplund Functions and Projectional Resolutions of the Identity. Serdica Mathematical Journal, Tome 26 (2000) no. 4, pp. 287-308. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_4_a1/