A Characterization of Varieties of Associative Algebras of Exponent two
Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 245-252.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

It was recently proved that any variety of associative algebras over a field of characteristic zero has an integral exponential growth. It is known that a variety V has polynomial growth if and only if V does not contain the Grassmann algebra and the algebra of 2 × 2 upper triangular matrices. It follows that any variety with overpolynomial growth has exponent at least 2. In this note we characterize varieties of exponent 2 by exhibiting a finite list of algebras playing a role similar to the one played by the two algebras above.
Keywords: Variety of Algebras, Polynomial Identity
@article{SMJ2_2000_26_3_a4,
     author = {Giambruno, A. and Zaicev, M.},
     title = {A {Characterization} of {Varieties} of {Associative} {Algebras} of {Exponent} two},
     journal = {Serdica Mathematical Journal},
     pages = {245--252},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a4/}
}
TY  - JOUR
AU  - Giambruno, A.
AU  - Zaicev, M.
TI  - A Characterization of Varieties of Associative Algebras of Exponent two
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 245
EP  - 252
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a4/
LA  - en
ID  - SMJ2_2000_26_3_a4
ER  - 
%0 Journal Article
%A Giambruno, A.
%A Zaicev, M.
%T A Characterization of Varieties of Associative Algebras of Exponent two
%J Serdica Mathematical Journal
%D 2000
%P 245-252
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a4/
%G en
%F SMJ2_2000_26_3_a4
Giambruno, A.; Zaicev, M. A Characterization of Varieties of Associative Algebras of Exponent two. Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 245-252. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a4/