Perturbed Proximal Point Algorithm with Nonquadratic Kernel
Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 177-206.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.
Keywords: Proximal Point Algorithm, Bregman Functions, Generalized Resolvent Operator, Variational Convergence
@article{SMJ2_2000_26_3_a0,
     author = {Brohe, M. and Tossings, P.},
     title = {Perturbed {Proximal} {Point} {Algorithm} with {Nonquadratic} {Kernel}},
     journal = {Serdica Mathematical Journal},
     pages = {177--206},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a0/}
}
TY  - JOUR
AU  - Brohe, M.
AU  - Tossings, P.
TI  - Perturbed Proximal Point Algorithm with Nonquadratic Kernel
JO  - Serdica Mathematical Journal
PY  - 2000
SP  - 177
EP  - 206
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a0/
LA  - en
ID  - SMJ2_2000_26_3_a0
ER  - 
%0 Journal Article
%A Brohe, M.
%A Tossings, P.
%T Perturbed Proximal Point Algorithm with Nonquadratic Kernel
%J Serdica Mathematical Journal
%D 2000
%P 177-206
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a0/
%G en
%F SMJ2_2000_26_3_a0
Brohe, M.; Tossings, P. Perturbed Proximal Point Algorithm with Nonquadratic Kernel. Serdica Mathematical Journal, Tome 26 (2000) no. 3, pp. 177-206. http://geodesic.mathdoc.fr/item/SMJ2_2000_26_3_a0/