Limit Theorems for Regenerative Excursion Processes
Serdica Mathematical Journal, Tome 25 (1999) no. 1, pp. 19-40.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The regenerative excursion process Z(t), t = 0, 1, 2, . . . is constructed by two independent sequences X = {Xi , i ≥ 1} and Z = {Ti , (Zi (t), 0 ≤ t Ti ), i ≥ 1}. For the embedded alternating renewal process, with interarrival times Xi – the time for the installation and Ti – the time for the work, are proved some limit theorems for the spent worktime and the residual worktime, when at least one of the means of Xi and Ti is infinite. Limit theorems for the process Z(t) are proved, too. Finally, some applications to the branching processes with state-dependent immigration are given.
Keywords: Alternating Renewal Processes, Regenerative Processes, Limit Theorems, Branching Processes, State-Dependent Immigration
@article{SMJ2_1999_25_1_a3,
     author = {Mitov, Kosto},
     title = {Limit {Theorems} for {Regenerative} {Excursion} {Processes}},
     journal = {Serdica Mathematical Journal},
     pages = {19--40},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a3/}
}
TY  - JOUR
AU  - Mitov, Kosto
TI  - Limit Theorems for Regenerative Excursion Processes
JO  - Serdica Mathematical Journal
PY  - 1999
SP  - 19
EP  - 40
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a3/
LA  - en
ID  - SMJ2_1999_25_1_a3
ER  - 
%0 Journal Article
%A Mitov, Kosto
%T Limit Theorems for Regenerative Excursion Processes
%J Serdica Mathematical Journal
%D 1999
%P 19-40
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a3/
%G en
%F SMJ2_1999_25_1_a3
Mitov, Kosto. Limit Theorems for Regenerative Excursion Processes. Serdica Mathematical Journal, Tome 25 (1999) no. 1, pp. 19-40. http://geodesic.mathdoc.fr/item/SMJ2_1999_25_1_a3/