Uniform Convergence of the Newton Method for Aubin Continuous Maps
Serdica Mathematical Journal, Tome 22 (1996) no. 3, pp. 385-398.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we prove that the Newton method applied to the generalized equation y ∈ f(x) + F(x) with a C^1 function f and a set-valued map F acting in Banach spaces, is locally convergent uniformly in the parameter y if and only if the map (f +F)^(−1) is Aubin continuous at the reference point. We also show that the Aubin continuity actually implies uniform Q-quadratic convergence provided that the derivative of f is Lipschitz continuous. As an application, we give a characterization of the uniform local Q-quadratic convergence of the sequential quadratic programming method applied to a perturbed nonlinear program.
Keywords: Generalized Equation, Newton’s Method, Sequential Quadratic Programming
@article{SMJ2_1996_22_3_a6,
     author = {Dontchev, Asen},
     title = {Uniform {Convergence} of the {Newton} {Method} for {Aubin} {Continuous} {Maps}},
     journal = {Serdica Mathematical Journal},
     pages = {385--398},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a6/}
}
TY  - JOUR
AU  - Dontchev, Asen
TI  - Uniform Convergence of the Newton Method for Aubin Continuous Maps
JO  - Serdica Mathematical Journal
PY  - 1996
SP  - 385
EP  - 398
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a6/
LA  - en
ID  - SMJ2_1996_22_3_a6
ER  - 
%0 Journal Article
%A Dontchev, Asen
%T Uniform Convergence of the Newton Method for Aubin Continuous Maps
%J Serdica Mathematical Journal
%D 1996
%P 385-398
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a6/
%G en
%F SMJ2_1996_22_3_a6
Dontchev, Asen. Uniform Convergence of the Newton Method for Aubin Continuous Maps. Serdica Mathematical Journal, Tome 22 (1996) no. 3, pp. 385-398. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_3_a6/