Existence of Global Solutions to Supercritical Semilinear Wave Equations
Serdica Mathematical Journal, Tome 22 (1996) no. 2, pp. 125-164.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this work we study the existence of global solution to the semilinear wave equation (1.1) (∂2t − ∆)u = F(u), where F(u) = O(|u|^λ) near |u| = 0 and λ > 1. Here and below ∆ denotes the Laplace operator on R^n. The existence of solutions with small initial data, for the case of space dimensions n = 3 was studied by F. John in [13], where he established that for 1 λ 1+√2 the solution of (1.1) blows-up in finite time, while for λ > 1 + √2 the solution exists globally in time. Therefore, the value λ0 = 1 + √2 is critical for the semilinear wave equation (1.1).
Keywords: Semilinear Wave Equation, Strichartz Estimate
@article{SMJ2_1996_22_2_a5,
     author = {Georgiev, V.},
     title = {Existence of {Global} {Solutions} to {Supercritical} {Semilinear} {Wave} {Equations}},
     journal = {Serdica Mathematical Journal},
     pages = {125--164},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a5/}
}
TY  - JOUR
AU  - Georgiev, V.
TI  - Existence of Global Solutions to Supercritical Semilinear Wave Equations
JO  - Serdica Mathematical Journal
PY  - 1996
SP  - 125
EP  - 164
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a5/
LA  - en
ID  - SMJ2_1996_22_2_a5
ER  - 
%0 Journal Article
%A Georgiev, V.
%T Existence of Global Solutions to Supercritical Semilinear Wave Equations
%J Serdica Mathematical Journal
%D 1996
%P 125-164
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a5/
%G en
%F SMJ2_1996_22_2_a5
Georgiev, V. Existence of Global Solutions to Supercritical Semilinear Wave Equations. Serdica Mathematical Journal, Tome 22 (1996) no. 2, pp. 125-164. http://geodesic.mathdoc.fr/item/SMJ2_1996_22_2_a5/