New Upper Bounds for Some Spherical Codes
Serdica Mathematical Journal, Tome 21 (1995) no. 3, pp. 231-238.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein bounds [11, 12]. In such cases we find the distance distributions of the corresponding feasible maximal spherical codes. Usually this leads to a contradiction showing that such codes do not exist.
Keywords: Spherical Codes, Linear Programming Bounds, Distance Distribution
@article{SMJ2_1995_21_3_a4,
     author = {Boyvalenkov, Peter and Kazakov, Peter},
     title = {New {Upper} {Bounds} for {Some} {Spherical} {Codes}},
     journal = {Serdica Mathematical Journal},
     pages = {231--238},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a4/}
}
TY  - JOUR
AU  - Boyvalenkov, Peter
AU  - Kazakov, Peter
TI  - New Upper Bounds for Some Spherical Codes
JO  - Serdica Mathematical Journal
PY  - 1995
SP  - 231
EP  - 238
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a4/
LA  - en
ID  - SMJ2_1995_21_3_a4
ER  - 
%0 Journal Article
%A Boyvalenkov, Peter
%A Kazakov, Peter
%T New Upper Bounds for Some Spherical Codes
%J Serdica Mathematical Journal
%D 1995
%P 231-238
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a4/
%G en
%F SMJ2_1995_21_3_a4
Boyvalenkov, Peter; Kazakov, Peter. New Upper Bounds for Some Spherical Codes. Serdica Mathematical Journal, Tome 21 (1995) no. 3, pp. 231-238. http://geodesic.mathdoc.fr/item/SMJ2_1995_21_3_a4/