A Mean Value Theorem for non Differentiable Mappings in Banach Spaces
Serdica Mathematical Journal, Tome 21 (1995) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove that if f is a real valued lower semicontinuous function on a Banach space X and if there exists a C^1, real valued Lipschitz continuous function on X with bounded support and which is not identically equal to zero, then f is Lipschitz continuous of constant K provided all lower subgradients of f are bounded by K. As an application, we give a regularity result of viscosity supersolutions (or subsolutions) of Hamilton-Jacobi equations in infinite dimensions which satisfy a coercive condition. This last result slightly improves some earlier work by G. Barles and H. Ishii.
Keywords: Mean Value Theorem, Smooth Variational Principle, Non Smooth Analysis, Viscosity Solutions
@article{SMJ2_1995_21_1_a3,
     author = {Deville, Robert},
     title = {A {Mean} {Value} {Theorem} for non {Differentiable} {Mappings} in {Banach} {Spaces}},
     journal = {Serdica Mathematical Journal},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SMJ2_1995_21_1_a3/}
}
TY  - JOUR
AU  - Deville, Robert
TI  - A Mean Value Theorem for non Differentiable Mappings in Banach Spaces
JO  - Serdica Mathematical Journal
PY  - 1995
SP  - 59
EP  - 66
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SMJ2_1995_21_1_a3/
LA  - en
ID  - SMJ2_1995_21_1_a3
ER  - 
%0 Journal Article
%A Deville, Robert
%T A Mean Value Theorem for non Differentiable Mappings in Banach Spaces
%J Serdica Mathematical Journal
%D 1995
%P 59-66
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SMJ2_1995_21_1_a3/
%G en
%F SMJ2_1995_21_1_a3
Deville, Robert. A Mean Value Theorem for non Differentiable Mappings in Banach Spaces. Serdica Mathematical Journal, Tome 21 (1995) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/SMJ2_1995_21_1_a3/