Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 399-416

Voir la notice de l'article provenant de la source Numdam

We consider, as a simple model problem, the application of Virtual Element Methods (VEM) to the linear Magnetostatic three-dimensional problem in the classical Vector Potential formulation. The Vector Potential is treated as a triplet of 0-forms, approximated by nodal VEM spaces. However this is not done using three classical H 1 -conforming nodal Virtual Elements, and instead we use the Stokes Elements introduced originally in the paper Divergence free Virtual Elements for the Stokes problem on polygonal meshes (ESAIM Math. Model. Numer. Anal. 51 (2017), 509–535) for the treatment of incompressible fluids.

Publié le :
DOI : 10.5802/smai-jcm.40
Classification : 65N30
Keywords: Virtual Element Methods, Serendipity, Magnetostatic problems, Vector Potential

Beirão da Veiga, Lourenço 1 ; Brezzi, Franco 2 ; Marini, L. Donatella 3 ; Russo, Alessandro 1

1 Dipartimento di Matematica e Applicazioni, Università di Milano - Bicocca, Via Cozzi 55, I-20153, Milano, Italy and IMATI-CNR, Via Ferrata 1, I-27100 Pavia, Italy
2 IMATI-CNR, Via Ferrata 1, I-27100 Pavia, Italy
3 Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, I-27100 Pavia, Italy and IMATI-CNR, Via Ferrata 1, I-27100 Pavia, Italy
@article{SMAI-JCM_2018__4__399_0,
     author = {Beir\~ao da Veiga, Louren\c{c}o and Brezzi, Franco and Marini, L. Donatella and Russo, Alessandro},
     title = {Virtual {Element} approximations of the {Vector} {Potential} {Formulation} of {Magnetostatic} problems},
     journal = {The SMAI Journal of computational mathematics},
     pages = {399--416},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.40},
     mrnumber = {3883675},
     zbl = {1416.78024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.40/}
}
TY  - JOUR
AU  - Beirão da Veiga, Lourenço
AU  - Brezzi, Franco
AU  - Marini, L. Donatella
AU  - Russo, Alessandro
TI  - Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 399
EP  - 416
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.40/
DO  - 10.5802/smai-jcm.40
LA  - en
ID  - SMAI-JCM_2018__4__399_0
ER  - 
%0 Journal Article
%A Beirão da Veiga, Lourenço
%A Brezzi, Franco
%A Marini, L. Donatella
%A Russo, Alessandro
%T Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
%J The SMAI Journal of computational mathematics
%D 2018
%P 399-416
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.40/
%R 10.5802/smai-jcm.40
%G en
%F SMAI-JCM_2018__4__399_0
Beirão da Veiga, Lourenço; Brezzi, Franco; Marini, L. Donatella; Russo, Alessandro. Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems. The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 399-416. doi: 10.5802/smai-jcm.40

Cité par Sources :