A class of robust numerical schemes to compute front propagation
The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 375-397

Voir la notice de l'article provenant de la source Numdam

In this work a class of finite volume schemes is proposed to numerically solve equations involving propagating fronts. They fall into the class of Hamilton-Jacobi equations. Finite volume schemes based on staggered grids and initially developed to compute fluid flows, are adapted to the G-equation, using the Hamilton-Jacobi theoretical framework. The designed scheme has a maximum principle property and is consistent and monotonous on Cartesian grids. A convergence property is then obtained for the scheme on Cartesian grids and numerical experiments evidence the convergence of the scheme on more general meshes.

Publié le :
DOI : 10.5802/smai-jcm.39
Classification : 35F21, 65N08, 65N12
Keywords: Finite volumes, Hamilton-Jacobi, Stability, Convergence

Therme, Nicolas 1

1 Université de Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France
@article{SMAI-JCM_2018__4__375_0,
     author = {Therme, Nicolas},
     title = {A class of robust numerical schemes to compute front propagation},
     journal = {The SMAI Journal of computational mathematics},
     pages = {375--397},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.39},
     zbl = {1416.65299},
     mrnumber = {3883674},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.39/}
}
TY  - JOUR
AU  - Therme, Nicolas
TI  - A class of robust numerical schemes to compute front propagation
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 375
EP  - 397
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.39/
DO  - 10.5802/smai-jcm.39
LA  - en
ID  - SMAI-JCM_2018__4__375_0
ER  - 
%0 Journal Article
%A Therme, Nicolas
%T A class of robust numerical schemes to compute front propagation
%J The SMAI Journal of computational mathematics
%D 2018
%P 375-397
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.39/
%R 10.5802/smai-jcm.39
%G en
%F SMAI-JCM_2018__4__375_0
Therme, Nicolas. A class of robust numerical schemes to compute front propagation. The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 375-397. doi: 10.5802/smai-jcm.39

Cité par Sources :